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Introduction
A supply chain of raw material products involves many parties from the upstream (suppliers) to 
the downstream (buyers). During the coronavirus disease 2019 (COVID-19) pandemic, there was 
a significant increase in prices, specifically for food and healthcare products (Bai et al. 2022). 
Moreover, there was a very high demand for certain products, and some buyers could not 
purchase some products needed (Gonzatto Junior et al. 2022). Similar extraordinary situations 
also occur for some products or services, such as tourism and hospitality during the post-
pandemic era. Other events that can lead to similar situations include crises, such as wars. These 
conditions cause uncertain prices and excess demand; hence ordinary decision-making support 
can no longer suit the situation. To solve this problem, the decision-makers or managers need a 
new approach to make optimal decisions. Therefore, the object of this study is the supply chain 
composed of three parties, namely inventory systems or warehouses, procurement departments 
and production units. These parties need to be optimised in an integrated way to gain maximal 
profit. 

Mathematical programming is a good approach for dealing with the optimisation of certain 
processes, especially in businesses (Kallrath 2021). Some fields have been benefiting from 
this approach, such as chemical production (Gelain et al. 2020; Pierott et al. 2021; Sanghvi 
et al. 2021; Shutaywi & Shah 2021), financial management (Barroso, Cardoso & Melo 2021; Faia et al. 
2021; Gutiérrez 2021; Perez et al. 2021), energy (Dehghani & Yoo 2020; Guo et al. 2021; Liu et al. 
2021; Okolie et al. 2021; Zhou et al. 2021) and agriculture production systems (Caicedo Solano, 
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García Llinás & Montoya-Torres 2022). Therefore, 
mathematical programming has successfully provided 
optimal solutions for the problems in these sectors. 

Several models have been proposed to solve the procurement 
problem with certain specifications. Nonlinear mathematical 
programming was formulated (Ware, Singh & Banwet 2014) to 
solve the problem with a single supplier network. Meanwhile, 
a slightly more complex model was proposed by Ahmad & 
Mondal (2016) for two-echelon supply networks. Further 
models were developed for more complex specifications, such 
as integration with carriers (Chulkova & Salapateva 2022), risk 
optimisation (Chen & Zou 2017; Firouz, Keskin & Melouk 
2017), backup sourcing (Papachristos & Pandelis 2022) and 
blockchain technology environment (Yadav & Prakash Singh 
2022), artificial intelligence and internet of things (Raja Santhi & 
Muthuswamy 2022), among others.

Some models were also developed for managing inventory 
systems and planning production by independently 
solving problems. The models solve problems in various 
environments, such as uncertain selling duration (He et al. 
2022), decentralised schemes (Meneses, Marques & Barbosa-
Póvoa 2023), sustainability awareness (Zarte, Pechmann & 
Nunes 2022), multi-site production units (Wang, Wang & 
Chen 2022) and others.

A model that integrates all three parties of inventory system 
and/or warehouse, procurement department and production 
unit for handling extraordinary situations, such as excess 
demand and probabilistic parameters, has not been 
developed. Therefore, this study aims to address this 
problem. It also introduced the dynamic-probabilistic 
mathematical programming that can be used as decision-
making support for managing inventory, procurement and 
production planning in an integrated way. The laboratory 
scale experiment results will be discussed to support the 
proposed model. For further details about the contribution of 
this study compared with existing works, see Table 1.

Research methods and designs 
Problem setting
Suppose a manufacturing and service industry is planning 
to produce several brands in the future with periodic time, 
the products will be made of raw materials purchased 
from different suppliers. The industry has warehouses to 
store products and raw material parts to be used for future 
productions along the time horizon of interest. There are 
situations where the demand for products could be 
excessive; therefore, the industry does not have to fully 
meet the demand. Furthermore, several parameters are 
uncertain even though their probability distributions are 
known. The problems include how many units of each 
product brand should be produced at each production 
period, how many units of each raw material part should 
be purchased from each supplier, and how many units of 
each product brand and raw material part should be stored 
in the warehouse at the end of each production period 
such that the expectation of the profit along the production 
time horizon is maximal. Further details about the 
specifications and assumptions of the problems are listed 
as follows:

• The flow of the raw material parts and the products is 
illustrated in Figure 1. Three types of parties are 
involved in the supply chain, namely suppliers, 
warehouses and production units. The product buyers 
are also included even though they are considered a 
passive party.

• Each party has its maximum capacity and should be 
satisfied by the decision of the decision-makers. A 
supplier has maximum capacity in supplying raw 
material parts. The warehouse has a maximum capacity 
for storing raw material parts and products. Meanwhile, 
the production unit has a maximum capacity for 
producing products.

• Each supplier has its characteristics in terms of 
performance, such as raw part prices, capacities and 
qualities. Prices tend to be uncertain in extraordinary 

TABLE 1: Related studies regarding procurement, inventory management, and production planning, and the specifications of the study.
Source Procurement 

optimisation
Inventory 
management

Production 
planning

Other specifications Multi-period Multi-raw  
material or product

Multi-
supplier

Uncertain 
environment

Method to solve

Martínez-Reyes, 
Quintero-Araújo & 
Solano-Charris (2021)

Yes No No - No No Yes Yes Simheuristic Algorithm

Corominas (2022) Yes Yes No - No No Yes Yes Derivative-based 
programming

Yadav et al. (2021b) No Yes No - Yes No No No Tabu search algorithm
Yadav et al. (2021a) No No No Travelling Salesman 

Problems
No Yes No Yes Ant Colony algorithm

Shahed et al. (2021) Yes Yes No Disruptions Yes No No Yes Pattern search and 
genetic algorithm 

Kumar, Kumar & Jain 
(2020)

No Yes No - Yes No No No Convex optimisation

Peng, Zhuo & Wang 
(2022)

Yes No Yes Option contract 
and demand 
information 
updating

No No No Yes Backward induction 
method

Almeida et al. (2022) Yes Yes Yes Tax raise and a 
capacity reduction

Yes Yes Yes Yes Two-stage stochastic 
programming

This article Yes Yes Yes Excess demands Yes Yes Yes Yes Probabilistic-based 
uncertain programming

Note: Please see the full reference list of the article, Wicaksono, P.A., Sutrisno, S., Solikhin, S. & Aziz, A., 2023, ‘Optimising inventory, procurement and production with excess demand and random 
parameters’, Journal of Transport and Supply Chain Management 17(0), a894. https://doi.org/10.4102/jtscm.v17i0.894, for more information.
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situations such as post-pandemic. In this study, prices are 
assumed to be probabilistic under the data availability 
assumption, which is used to formulate the probability 
distribution functions.

• Raw parts from suppliers might be rejected by  
the manufacturer because of damages or under 
qualification. The rate for rejected raw parts is naturally 
uncertain and assumed as a probabilistic parameter 
under the assumption that the manufacturer has 
historical data. In particular, some raw parts could be 
late in the delivery process because of the sudden 
unavailability of the suppliers. The rate for late delivery 
is also uncertain and assumed to be a probabilistic 
parameter. 

• For completeness, the performance of the production unit 
is also uncertain, making some of the products to be 
under qualification; therefore, they cannot be sold to 
buyers. The rate for underqualified products is assumed 
to be probabilistic.

• Product selling prices are also assumed to be uncertain in 
extraordinary situations such as pandemic. Prices could 
suddenly change following some factors, such as demand 
and government measures.

• In this problem, the decision-makers need to decide the 
optimal raw parts to be purchased by each supplier, the 
number of products to be produced by the manufacturer, 
as well as the raw parts or products to be stored in the 
inventory such that the profit for the whole supply chain 
activity is maximal. The planning is not only for one 
period but multiple, while the decision is made for the 
whole planning horizon.

• The demand for the products is assumed to be higher 
than the production capacities. This commonly occurs in 
extraordinary situations for some particular products, 
such as medicines during pandemic or tourism after 

pandemic. In this case, the demand does not have to be 
fully satisfied because of the production capacity limit 
of the manufacturer.

• It is assumed that there is no intermediate party such as 
distributor between the product inventory and the 
buyers. 

• In general, no lead time between suppliers and 
manufacturers is assumed. This means that raw material 
parts that are ordered at a certain observation time 
period are arrived in the manufacturer at the same 
observation time period. However, late deliveries are 
still possible, and some raw material parts could be 
delivered in the next time observation period. There 
might be lead time between manufacturer and buyers; 
however, it is assumed that buyers do not concern 
with this, and thus it is not taken into account in the 
model. 

The methodology implemented in this study is shown in 
Figure 2. Four steps were employed in the problem solving 
and each corresponds to a particular subproblem that needs 
to be solved.

Mathematical notations
A bunch of mathematical symbols is used to denote the 
parameters, decision variables and some values. The 

FIGURE 1: The supply chain comprises suppliers, production or assembly units 
and buyers.

Observa�on �me period: t є T ={1, 2, ...., T}

Produc�on/assembly

Brand 1 … Brand BBrand 2

Products inventory

Brand 1 … Brand BBrand 2

Raw Part 1 … Raw Part PRaw Part 2

Raw material parts inventory

Customer/buyer with probabilis�c demand

Demand 1 … Demand BDemand 2

Suppliers with various and uncertain specifica�ons

Supplier 1 … Supplier SSupplier 2

FIGURE 2: The procedure of problem-solving.

Step 4: Model
evalua�on and
implementa�on
• Evalua�ng the

proposed mode
• Rerun the

op�misa�on if
needed

• Evalua�ng the
decision-maker’s
sa�sfac�on

• Implemen�ng the
solu�on

Step 2: Mathema�cal
modelling process
• Formula�ng the

objec�ve func�on:
the profit for the
whole planing
horizon

• Formula�ng
constraint func�on
such as demand
sa�sfying, capacity
limits, etc. Step 1: Problem

iden�fica�on
• Iden�fying the

supply chain
• Iden�fying

probability
parameters

• Defining the
probability density
distribu�on
func�ons

Step 3: Op�misa�on
process
• Iden�fying the

op�misa�on problem
class: (integer)
linear probabilis�c
programming 

• Choosing the suitable
algorithm: uncertain
programming
algorithm 

• Computa�on:
Implemen�ng the
chosen algorithm for
calcula�ng the
op�mal decision
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notations are categorised based on their classes as  
follows:

Indices:

• Planning period : t ∈ T = {1, 2, ..., T}
• Type of raw parts : p ∈ P = {1, 2, ..., P}
• Index of suppliers : s ∈ S = {1, 2, ..., S}
• Brand of products : b ∈ B = {1, 2, ..., B}

Decision variables:

• The amount of raw part p to be procured by a supplier s 
at purchasing time t: Xtsp

• The amount of raw part p to be stored in the inventory at 
time t with IX

0p as the initial inventory level: I X
tp

• The amount of product brand b to be produced at 
production time t: Ytb

• The amount of product brand b to be stored in the inventory 
at time t with I Y

0p as the initial inventory level: IY
tb

• Binary decision variables indicating whether the 
supplier s is selected to supply raw parts along the 
planning time horizon of interest, 1 when yes, and 0 
otherwise: Zs

• Binary variable indicating the supplier s is selected as a 
new supplier over the planning time horizon: (1) when 
yes or (0) otherwise: Ws

• The number of deliveries needed to transport raw 
material parts from supplier s to the manufacturer at 
purchasing time t: Sts

Probabilistic parameters (input variables):

• Demand for product brand b at selling time period: Dtb
• Production or assembly cost to make one unit product 

brand b at production time t: ACtb
• Selling price for one unit of product brand b at selling 

time t: BPtb
• Price of one-unit raw part p at supplier s at purchasing 

time t: PPtsp
• The percentage or rate of the late delivered raw part p 

ordered to supplier s at purchasing time t: LRtsp
• The percentage or rate of the defected raw part p ordered 

to supplier s at purchasing time t: DRtsp
• One truck delivery cost for transporting raw parts from 

supplier s at purchasing time t: TCts
• The percentage or rate of the amount of underqualified 

product brand b at production time t: DY tb

Fixed parameters (input variables):

• Raw part b’s amount needed to make one product brand 
b: RPpb

• Maximum capacity of each truck used for transporting 
raw parts from suppliers at purchasing time t: Ct

• Suppliers’ maximum capacity in supplying raw part p at 
purchasing time t: SCtsp

• Order cost to supplier s for the whole optimisation 
horizon time: Ots

• Cost to penalise one unqualified raw part p at purchasing 
time t: PDtp

• Cost to penalise one delayed raw part p at purchasing 
time t: PLtp

• Cost for making a new contract to supplier s: NCs

• Inventory cost of one-unit raw part p per time: HPtp

• Inventory cost of one-unit brand b per time: HBtb

• Capacity of the inventory for storing raw part p at time t: MPtp

• Capacity of the inventory for storing product brand b at 
time t: MBtb

Auxiliary notations:

• Expectation value of its argument: E[.]
• Parameter ζ is probabilistic and normally distributed 

with mean μ and standard deviation σ: ξ ∼ N(μ, σ2)

The probabilistic and fixed (crisp) parameters are input 
variables of the model. The probability distribution 
function of each probabilistic parameter is specified by the 
decision-maker based on historical or observation data, 
whereas values for fixed parameters are specified by the 
decision-maker based on the observation or the contract. 

Mathematical optimisation model
The mathematical model is aimed to maximise the 
expectation of the total profit gained from the production 
activities for the whole planning time horizon t = 1, 2, …, T. 
The expected profit contains the following income and cost 
components:

• The total income from selling all products for all planning 
time horizon:

( )
1

( , ) T B

∑= ×

∈ ×

F BP Ytb tb

t b

 [Eqn 1]

• The total production cost for all products in all planning 
time horizon:

( )
2

( , ) T B

∑= ×

∈ ×

F AC Ytb tb

t b

 [Eqn 2]

• The total purchasing cost for all raw parts in all planning 
time horizon:

( )
3

{ , , } T
   

S
  

P

∑= ×

∈ × ×

F PP Xtsp tsp

t s p

 [Eqn 3]

• The total penalty cost for all defective and late delivered 
raw parts for all planning time horizon:

[( )

( )]

4

{ , , } T
  

S
  

P

∑= × ×

+ × ×
∈ × ×

F PD DR X

PL LR X

tp tsp tsp

t s p

tp tsp tsp

 [Eqn 4]

• The total cost to order and transport raw parts for all 
planning time horizon:

http://www.jtscm.co.za�
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∑= × + ×
∈ ×

F O Z TC Sts ts ts ts

t s

[( ) )]
5

( , ) T
    

B

 [Eqn 5]

• The total contract-making cost for all selected suppliers 
over the planning horizon:

( );

s

6

S

∑= ×

∈

F NC Ws s  [Eqn 6]

• The inventory cost for all parts stored in the warehouse 
over the planning horizon:

( )
7

{ , } T P

∑= ×

∈ ×

F HP Itp tp
X

t p
 [Eqn 7]

• The inventory cost for all products stored in the warehouse 
over the planning horizon:

∑= ×
∈ ×

F HB Itb tb
Y

t b

( )
8

{ , } T B

 [Eqn 8]

Based on the problem’s specifications and assumptions defined 
in the Research method and designs section, the objective 
function and the profit are maximised subject to the following 
constraint functions:

• Raw parts demand satisfaction: At every period of 
production activity, the available raw parts should satisfy 
what is needed for production. The available raw parts are 
counted as the parts in the inventory stored from the 
previous period plus the arriving parts from suppliers. 
This also includes late delivered raw parts from the 
previous period minus late delivered and rejected parts at 
the current period minus the parts stored in the inventory 
for the next period. This should not be less than the raw 
parts needed for production and it is modelled as follows:

∑

∑

+ + ×

× ≥

× ∀ ∈ × ×

∈

∈ × ×

I X LR X

LR X DR X I

RP Y t p b

t p
X

tsp t sp t sp

s

tsp tsp tsp tsp tp
X

pb tb

t p b

[ (

– ( )
_

]
_

( ), { , , } T P B;

( –1) ( –1) ( –1)

S

{ , , } T P B

 [Eqn 9]

where IX
0p is the initial raw part inventory level for raw part 

type p.

• Products’ demand constraints: The available products 
do not have to fully satisfy the demand. However, the 
decision-makers can set how big the demand should be 
satisfied. This is mathematically formulated as follows. 
For every period, the products produced at the current 
time minus underqualified products minus products that 
will be stored in the inventory to be used in the next 
period could be less than the demand:

( ) , { , } T B;
( 1)

+ − × − ≤ ∀ ∈ ×−I Y DR Y I D t bt b
Y

tb tb
Y

tb tb
Y

tb  [Eqn 10]

where IY
0b is the initial product inventory level for brand b.

• The number of delivery calculations: For every period, 
the number of deliveries from each supplier is calculated 

based on the capacity of one unit truck used and on the 
amount of each raw part purchased by the corresponding 
supplier. This is mathematically modelled as:

∑

















≤ ∀ ∈ ×∈

X

C
S t s

tsp
p

ts , { , } T S;
P

 [Eqn 11]

• Suppliers’ capacity limitations: At any period, the amount 
of the purchased raw parts to the supplier s cannot be higher 
than the supplier’s maximum capacity. This is formulated as:

, ( , , ) T S P;≤ ∀ ∈ × ×X SC t s ptsp tsp  [Eqn 12]

• Inventory capacity limitations: At any period, the 
amount of each raw part type and product brand stored 
in the inventory cannot be higher than the inventory’s 
maximum capacity. This is formulated as:

I MP t p

I MB t b

, ( , ) T P;

{ , } T B;

tp
X

tp

tb
Y

tb

≤ ∀ ∈ ×

≤ ∀ ∈ ×
 [Eqn 13]

• Selected suppliers’ indicators for order cost calculation: 
At a certain period, when a supplier is selected to supply 
some raw parts, its selection indicator variable will be 1 
or 0 otherwise. This is used for calculating the order cost 
in the objective function and is formulated as:

Z
X

t s
1, if 0

0, otherwise

{ , } T S;ts

tsp
p P

∑
=

>
∀ ∈ ×









∈  [Eqn 14]

• Selected suppliers’ indicators for making new contract 
cost calculations: For the whole planning time horizon, 
when a supplier is selected at least once, the indicator 
variable will be 1 or 0 otherwise. This is used to calculate 
the new contract-making cost with the selected suppliers. 
A new contract cost is not needed when a supplier has 
selected before. This is formulated as:

∑
=

>
∀ ∈









∈W
Z

s
1, if 0

0, otherwise

S;s

ts
t T  [Eqn 15]

• Integer and non-negativity constraints: All decision 
variables are non-negative. Therefore, when all or some 
decision variables are integers, they can be handled by 
the following constraints. This is not true for some cases 
and not all decision variables should be an integer. This 
can be seen in the forthcoming managerial insights 
discussion, which is modelled as:

≥

∀ ∈ × × ×

X Y I I

t s p b

{ , , , ,} 0 and integer,

{ , , , } T S P B.

tsp tb tp
X

tb
Y

 [Eqn 16]

The mathematical modelling is now complete and can be 
rewritten as the optimisation problem:

− − − − − − −
X Y I I

E F F F F F F F Fmax

{ , , ,

[ ]
1 2 3 4 5 6 7 8

tsp tb tp
X

tb
Y  [Eqn 17]
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subject to: 

∑

∑

+ + ×

− × − − ≥

× ∀ ∈ × ×

∈

∈ × ×

I X LR X

LR X DR X I

RP Y t p b

[

( ) ]

( ), { , , } T P B;

t p
X

tsp t sp t sp
s

tsp tsp tsp tsp tp
X

pb tb
t p b

( –1) ( –1) ( –1)

S

{ , , } T P B

− × − ≥ ∀ ∈ ×Y DR Y I D t b B( ) , { , } T ;tb tb
Y

tb tb
Y

tb

∑















≤ ∀ ∈ ×∈
X

C
S t s S, ( , ) T ;

tsp
p

ts
P

X SC t s p, ( , , ) T S P;tsp tsp≤ ∀ ∈ × ×

I MP t p, ( , ) T P;tp
X

tp≤ ∀ ∈ ×

I MB t b{ , } T B;tb
Y

tb≤ ∀ ∈ ×

Z
X

t s
1, if 0

0, otherwise

{ , } T Sts

tsp
p P

∑
=

>
∀ ∈ ×









∈

W
Z

s
1, if 0

0, otherwise

Ss

ts
t T

∑
=

>
∀ ∈









∈

X Y I I ≥

t s p b

{ , , , } 0 and integer, 

{ , , , } T S P B.

tsp tb tp
X

tb
Y

∀ ∈ × × ×

The given mathematical optimisation belongs to the 
probabilistic linear integer programming class and can be 
solved by using an uncertain programming solver. The details 
of the technical procedures are presented in (Liu 2015).

Probabilistic programming
Let the vector x= x x xn n… �∈( , , , )

1 2
 be the vector of decision 

variables. For uncertain parameters, let ξi, i = 1, 2, …, m 
be their probabilistic/random parameters/variables and 

 µξ →
i

:  the probability density functions. These 

probabilistic parameters can be denoted as the vector ξ = (ξ1, 
…, ξm). Considering the optimisation problem containing 
probabilistic parameters with  ξ →+f x( , ) :

n m  as its 
objective function will be the maximised subject to the 
constraint functions gi (x, ξ) ≤ 0, i =1, 2, …, p and hj (x, ξ) ≤ 0, 
j =1, 2, …, p. All or some decision variables can be set to be 
integers. Also, all the decision variables are considered 
integers and non-negative. This optimisation problem can be 
rewritten in the complete form as:



ξ

ξ

ξ

( )
( )
( )

f x

g x ≤ i= p

h x = j= q

x ≥

max ,   

s.t.    , 0, 1,2, , ;

, 0, 1,2,..., ;

0 and integer.

i

j

x

 [Eqn 18] 

The common approach for solving this uncertain 
programming is to convert it into deterministic equivalent 
programming by taking the expectation of the objective 
and constraint functions. The technical details are 
presented in a study by Liu (2009). The following 
deterministic equivalent programming is converted as 
follows:



ξ

ξ

ξ

( )
( )
( )

E f x

E g x ≤ i= p

E h x = j= q

x ≥

max [ , ]  

s.t.    [ , ] 0, 1,2, , ;

[ , ] 0, 1,2,..., ;

0 and integer.

i

j

x

 [Eqn 19]

In this way, the expectation value of the objective function is 
now maximised instead of its real value. Therefore, the 
algorithms for solving deterministic optimisation problems 
can be used. 

Computational experiment results
Computational experiments were carried out in a 
laboratory to implement the proposed model with 
randomly generated supply chain data. The performance 
of the proposed mathematical model was discussed to 
evaluate the results.

Parameter setting
For the supply chain illustrated in Figure 2, six suppliers 
were considered, namely S1, S2, S3, S4, S5 and S6. They 
supplied two types of raw parts, namely P1 and P2, which 
were subsequently used to produce three products with 
brands B1, B2 and B3. 

All the probabilistic parameters were considered normally 
distributed with randomly generated means and standard 
deviations. Meanwhile, values for certain parameters were 
randomly generated. The initial inventory level at period t = 1 is 
zero for all raw part types and product brands, that is, 
IX

0p = IY
0b = 0. All of probabilistic parameters have normal 

probability distributions; their means and variances are shown 
in Table 2. Meanwhile, values of some fixed parameters are 
shown in Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, 
Table 9 and Table 10. 

In particular, the order cost is 25, 35, 20, 30, 30 and 35, 
respectively, for supplier S1, S2, S3, S4, S5 and S6. The 
truck’s capacity Ct is 100 units per truck for each observation 
time period. Meanwhile, the new contract cost NCs is 25, 25, 
30, 35, 30 and 30, respectively, for supplier S1, S2, S3, S3, S4, 
S5 and S6.

Ethical considerations
This article does not contain any studies involving human 
participants, and ethical clearance was not required for the 
research conducted.
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Results and discussion
All computations were carried out in LINGO 19.0 optimisation 
software by utilising the uncertain programming package. 
The algorithm applied in the calculations was the generalised 
reduced gradient. This was used to solve the deterministic 
equivalent optimisation problem, which was combined with 
the branch and bound to calculate the integer solutions. The 
computer used in the experiment had regular specifications 
of a 3.0 GHz processor and 8GB RAM. In general, the 
higher the specifications of the computer the shorter the 
computational time. The numerical experiment was 
performed for six periods of observation. However, with 
these standard specifications, the computation was 
performed within a two-by-two period. This means the 
optimisation problem was solved for periods t = 1, 2 , while 
the inventory level at t = 2 was used as the initial inventory 
level for the computation of t = 3, 4. Finally, the inventory 
level at period t = 3 was used as the initial level for the 
computation of t = 5, 6. Figure 3, Figure 4 and Figure 5 show 
the optimal decisions regarding the optimal raw part 
procurement, production and inventory management, 
respectively. 

According to Figure 3, only some suppliers were selected to 
supply raw parts, for instance, at period 1, only suppliers 
S1, S2 and S4 were selected. Meanwhile, some were selected 
to supply only certain raw parts, for example, S1 and S2 
supplied only raw part P1, while S4 supplied raw parts P1 
and P2. This was because of the different performances of 
the various suppliers. Therefore, the mathematical model 
tried to determine the best combination as its optimal 
decision, which gave the minimal expectation of the raw 
part procurement cost for the whole optimisation time 
horizon.

TABLE 6: Values for PLp.
Supplier Part type

P1 P2

S1 1 1.5
S2 1 1.5
S3 2 1.5
S4 1 1
S5 1 2.5
S6 1 2.5

TABLE 5: Values for PDp.
Supplier Part type

P1 P2

S1 1.5 1.5
S2 1.5 2
S3 2 2.5
S4 1 1
S5 2.5 1
S6 2 1.5

TABLE 4: Values for SCtsp.
Supplier Raw part

P1 P2

S1 250 450
S2 150 350
S3 250 300
S4 225 250
S5 225 275
S6 475 375

TABLE 3: Values for RPpb.
Part type Product brand

B1 B2 B3

P1 2 2 1
P2 1 1 2

TABLE 2: Mean and variance of probabilistic parameters.
Parameter Mean Variance

Dtb 75 20

ACtb 4 1

BPtb 250 20

PPtsp 12 5

LRtsp 0.075 0.005

DRtsp 0.075 0.005

TCts 120 20

DYtb 0.075 0.005

TABLE 7: Values for HPtp.

Supplier Raw part

P1 P2

S1 2 2
S2 2.5 2.5
S3 3 3
S4 1.5 1.5
S5 2 2
S6 3 3

TABLE 8: Values for inventory cost and maximum inventory for products.
Brand Parameters

HBtb HBtb

B1 500 450
B2 200 550
B3 450 500

TABLE 9: Values for MPtp.
Supplier Raw part

P1 P2 P3 P4 P5

S1 500 450 250 300 400
S2 200 550 450 350 250
S3 450 500 550 100 250
S4 250 560 280 550 230
S5 440 540 450 150 200

TABLE 10: Values for MBtb.
Supplier Raw part

P1 P2 P3 P4 P5

S1 500 450 250 300 400
S2 200 550 450 350 250
S3 450 500 550 100 250
S4 250 560 280 550 230
S5 440 540 450 150 200
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Regarding the production planning decision, Figure 4 shows 
the optimal decision on how much each product brand 
should be produced in each period following the dynamics 
of the demand. All product brand types need to be produced 
for each period except period three where B1 is better not to 
be produced. This is because it mathematically gives a better 
expectation of the profit, meaning that producing this 
product brand at this period gives less expectation of the 
profit.

Figure 5 shows the optimal decisions regarding inventory 
management for the raw parts and the products. For some 
periods, it is better to buy more raw parts and/or produce or 
products and store them in the inventory for future periods, 
for example, raw parts at period 1 and products at period 2. 
This is generally because of the holding cost, which is cheaper 
than the procurement and/or production cost. At some other 
periods, it is better not to store raw parts but to buy or 
produce the parts to be used. This is because of procurement 

and/or production cost, which is cheaper than holding cost 
in general. This optimal decision was generated by the 
optimisation model following the prices and/or costs for all 
periods. For the whole periods 1 to 6, the expected maximal 
profit generated by the mathematical optimisation model 
was 246862.37. This is the expectation of the profit. The actual 
profit would be known only after all uncertain parameters 
are revealed, and it could be higher or less than expected. 
This is the best decision-makers can do in dealing with 
uncertain optimisation. 

The results can be examined when all uncertain parameters 
are already known by observing possible outcomes. 
Furthermore, the two possible outcomes that are presented 
in Figure 6 are considered. For the first possible outcome in 
scenario 1, the actual profit was 255023.39 where all demands 
were satisfied with no shortages, but overproduction. 
Meanwhile, for the second possible outcome in scenario 2, 
the actual profit was much less, that is, 238701.29. In this 

FIGURE 4: The optimal decision regarding the production.
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FIGURE 5: The optimal decision regarding the inventory management.
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FIGURE 3: The optimal decision regarding the raw part procurement.
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outcome, there was as many as 46 units shortage for product 
brand B3. Also, there were only two possible outcomes as 
simulations, and some others might still occur.

The proposed mathematical model and the computational 
experiment results left some topics of discussion for decision-
makers while implementing the model. This is summarised 
in the following managerial insights: 

• The proposed model can be modified following the 
problem’s specifications faced by the decision-makers. 
For example, only some decision variables can be 
considered integers while some others are following real 
numbers. This occurs when the unit of raw materials or 
products is non-integer.

• Only normal probability distributions were used in the 
experiments of this study. Moreover, the decision-makers 
could use different probability distributions for some 
particular uncertain parameters. However, this will depend 
on the data and which probability distribution fits the data.

• When the decision-makers still have time before using the 
decision generated by the model, the optimisation can be 
run multiple times. The LINGO 19.0 will generate different 
possible outcomes and could give different optimal 
decisions. The decision-makers can decide, which decisions 
will be implemented based on experience and intuition.

• When the supply-chain problem is bigger, for example, 
with more suppliers, raw part types as well as product 
brands, the model will be bigger in terms of the variables 
and parameter numbers. In this case, both the 
computational time and the number of decision variables 
will grow exponentially. Therefore, a common computer 
might not be sufficient and a super-computer will be 
needed. Parallel computing techniques or metaheuristic 
algorithms could be implemented as alternatives.

• The actual profit, in the end, could be different from the 
profit value provided by the mathematical model as the 
problem was solved under uncertainty of parameters. 
However, the provided profit value is mathematically 
optimal.

• The proposed model can be slightly modified by 
following the specification of the problem. For example, 
some fixed costs can be added to the objective function. 

Some new constraint functions can also be added such as 
budget limitations and production capacities.

Summary and future works
A new mathematical optimisation model has been proposed 
in the form of probabilistic dynamical optimisation.  
This model can be used by the decision-makers in 
manufacturing and retail industries for optimising 
integrated inventory, procurement and production 
planning with excess demand or uncertain parameters. 
Furthermore, it is suitable for extraordinary situations, 
such as during or post-pandemic periods. The 
computational experiment results showed that the 
proposed model successfully solved the given problem. 

Further studies are recommended to develop the proposed 
model in order to handle more parties in the supply chain, 
namely distributors and carriers. In particular, the size of the 
problem solved in the numerical experiment was relatively 
small, and thus common optimisation algorithms were sufficient 
to solve the corresponding optimisation problem. If the size of 
the problem is sufficiently large, metaheuristic-based algorithms 
could be developed to solve the problem. Another potential 
extension is developing the model with problems containing 
lead time delay, for example, lead time in transporting raw 
material parts from suppliers to the manufacturer.
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