BUKTI KORESPONDENSI

No.	Kegiatan	Tanggal
1.	Pengiriman draft publikasi pertama (Bukti penerimaan draft publikasi dari team editor)	13 Juni 2024
2.	Permintaan revisi untuk draft yang dikirim ke jurnal	25 Juni 2024
3.	Perbaikan draft publikasi dari penulis	9 Juli 2024
4.	Permintaan revisi dari editor terhadap hasil perbaikan pertama	19 Juli 2024
5.	Perbaikan draft publikasi atas koreksi editor	26 Juli 2024
6.	Draft publikasi dinyatakan diterima untuk dipublikasikan dan permintaan untuk merevisi format penulisan	29 Juli 2024
7.	Pengiriman draft perbaikan format penulisan dari penulis	30 Juli 2024
8.	Permintaan copyediting dari editor	9 Agustus 2024
9.	Pengiriman draft hasil copyediting dari penulis	16 Agustus 2024
10.	Penerimaan draft hasil copyediting oleh editor	16 Agustus 2024
11.	Permintaan proofreading draft sebelum terbit via OJS	20 Agustus 2024
12.	Pengiriman hasil proofreading dari penulis via OJS	22 Agustus 2024
13.	Naskah publikasi terbit	1 September 2024

1. Pengiriman draft publikasi pertama (Bukti penerimaan draft publikasi dari team editor)

Anis Muktiani <anis.muktiani@gmail.com>

[TASJ] Submission Acknowledgement

Prof. Dr. Ir. Komang G. Wiryawan <jurnal@apps.ipb.ac.id> To: Dr Anis Muktiani <anismuktiani@gmail.com> Thu, Jun 13, 2024 at 10:54 PM

Dr Anis Muktiani:

Thank you for submitting the manuscript, "Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability, Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid" to Tropical Animal Science Journal. With the online journal management system that we are using, you will be able to track its progress through the editorial process by logging in to the journal website:

Manuscript URL: https://journal.ipb.ac.id/index.php/tasj/authorDashboard/submission/56357 Username: anismuktiani

If you have any questions, please contact me. Thank you for considering this journal as a venue for your work.

Prof. Dr. Ir. Komang G. Wiryawan

Journal http://journal.ipb.ac.id/index.php/tasj

Tropical Animal Science

FORM A

Tropical Animal Science

Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability, Digestibility and Unsaturated Fatty Acid Profile in

Faculty of Animal Science Building, IPB University Jln. Agatis, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: https://journal.ipb.ac.id/index.php/tasj

Author Statement Form

To: Editorial Board of Tropical Animal Science Journal

Herewith we submit a manuscript,

Title

Rumen LiquidCorresponding author name: Anis MuktianiPhone/e-mail: 08156529879 / anismuktiani@lecturer.undip.ac.id

To be published in Tropical Animal Science Journal (TASJ).

Please read statements and check all check boxes

V 1 Author Responsibility

We declare that the content of this manuscript or a major portion thereof has not been published, that it is not being submitted for publication elsewhere. It will not be submitted to any media during the review process unless we have officially withdrawn the manuscript from Tropical Animal Science Journal on a letter containing relevant reasons signed by all authors.

We ensure that the manuscript was prepared according to the TASJ guidelines

We agree to follow the entire process of manuscript selection according to Tropical Animal Science Journal procedures, including revising the manuscripts by following the Editor and Reviewers comments in a specified time. We understand and agree that if we do not follow the rules, we will be disqualified for publishing the manuscript in Tropical Animal Science Journal for two consecutive years since the letter was issued.

We declare that all listed names are entitled to become an author, and all have agreed with the final form of submitted manuscripts.

V 2 Publication Fee

The corresponding author (or one of the co-authors) will be responsible for the **publication fee** stated in the manuscript charge policy.

V 3

3 Author Contributions

We indicate the specific contributions of each author with initials, i.e. <u>Conception and design of the study</u>: AM <u>Acquisition of data</u>: WDY <u>Analysis and/or interpretation of data</u>: AM <u>Drafting the manuscript</u>: NSP <u>Critical review/revision</u>: AM <u>Others</u>: AM

Tropical Animal Science

Faculty of Animal Science Building, IPB University Jln. Agatis, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: https://journal.ipb.ac.id/index.php/tasj

V 4 Disclosure of Conflicts of Interest

We certify that there is no conflict of interest with any financial, personal, or other relationships with other people or organizations related to the material discussed in the manuscript.

5 Institutional Animal Care and Use Committee (IACUC) Approval

We ensure that studies involving animals were performed according to animal ethics and welfare. All animal experiments were reviewed by the Institutional Animal Care and Use Committee (IACUC) of similar committees of the organization at which the experiment was carried out, and the APPROVAL NUMBER was indicated in the first part of the Materials & Methods section.

THE APPROVAL NUMBER: (letter attached)

V 6 Copyright Transfer Agreement

On the occasion of the final acceptance of this manuscript, the authors agree to transfer the article copyright to Tropical Animal Science Journal to publish the article in any media format, share, disseminate, index, and maximize the article's impact in any databases.

Thank you for your attention and collaboration.

June 13 rd , 2024	
Author : Anis Muktiani	E-mail : anismuktiani@lecturer.undip.ac.id
Author : Widiyanto Widiyanto	E-mail : widiyanto@lecturer.undip.ac.id
Author : Nuruliarizki Shinta P	E-mail : shin_tse@yahoo.com

1	Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability,
2	Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid
3	
4	A. Muktiani*, W. Widiyanto, N.S. Pandupuspitasari
5	Lecturer of Faculty of Animal and Agricultural Science, Diponegoro University
6	Jl. Prof. Jacup Rais, Kampus Universitas Diponegoro, Semarang 65145, Indonesia
7	*Corresponding author: anismuktiani@lecturer.undip.ac.id
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

ABSTRACT

27 The energy needs of dairy cows during the lactation period increase significantly., 28 and the essential mineral zinc is crucial for their metabolic, production, and reproductive processes, despite common deficiencies. This study aimed to evaluate the effects of 29 30 energy and organic zinc supplements, specifically zinc palm oil soap (ZPOS), on 31 fermentability, digestibility, and unsaturated fatty acid profiles in vitro. The four treatments were: T0 (basal diet without supplementation), T1 (basal diet + 5% palm oil, 32 33 PO), T2 (basal diet + 5% partially ZPOS: 75% ZPOS + 25% PO), and T3 (basal diet + 34 5% ZPOS). The inoculum source was rumen liquid from fistulated female dairy goats. 35 The feed consisted of corn straw, soybean hulls, and concentrate (TDN 63%, CP 14%, NDF 35%). Our findings showed that both partial and full ZPOS supplementation (T2 36 and T3) resulted in higher VFA and microbial protein production, and lower NH3 levels 37 38 compared to the control (P<0.05). While DM, OM, and CP digestibility were unaffected by the treatments, digestibility of EE, CF, NDF, and ADF was significantly higher 39 (P<0.05). ZPOS supplementation increased acetate and propionate levels but did not 40 41 affect butyrate, reducing the A/P ratio and methane production. The PO treatment was dominated by stearate (C18:0), whereas the ZPOS treatments showed higher levels of 42 trans 11 C18:1 and EPA compared to the control. In conclusion, adding protected palm 43 oil in the form of zinc soap enhances fermentability, digestibility, and MUFA content in 44 45 rumen liquid.

- 47
- 48
- 49

⁴⁶ Keywords: Palm oil, soap, Zinc, fermentability, fatty acid ruminal.

INTRODUCTION

Adequate energy intake often becomes a challenge for high-producing dairy livestock, especially in early lactation. Energy requirements can be two to three times higher than the basic maintenance needs because it is used for tissue maintenance after giving birth and milk production (Khotijah et al., 2017). Energy deficiency has detrimental effects, including low production and weight loss in livestock (Tribout et al., 2023).

Palm oil is one of the most promising vegetable oils to be used as an energy source 57 with gross energy (GE) content was 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is 58 also easily obtainable, resistant to rancidity, and affordable. The global price of palm oil 59 60 is \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/mt, coconut oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains high 61 levels of unsaturated fatty acids, specifically oleic acid at oleic acid at 39.2% (Mancini et 62 63 al., 2015). Unsaturated fatty acids contribute to energy efficiency by reducing protozoa 64 (Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane (CH4) production 65 and the acetate/propionate (A/P) ratio by increasing propionate production (Gao et al., 66 2016).

However, oil supplementation also has negative effects. Fat particles tend to coat
feed particles, which hinders the adhesion of rumen microbes, especially fibrolytic
microbes, thus reducing fiber digestibility (Sears et al., 2024). Rumen microbes defend
against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty
acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014).

Palm oil used in animal feed must be protected to prevent biohydrogenation and
to avoid disrupting rumen bacterial fermentation. It is essential to safeguard

polyunsaturated fatty acids to preserve their biological roles, such as being structural components of biomembranes that uphold membrane integrity. Polyunsaturated fatty acids in biomembranes ensure membrane fluidity, which supports the activity of membrane-bound enzymes, facilitates intracellular metabolism, and enhances nutrient utilization efficiency in livestock (Pereira et al., 2022).

One effective method is saponification, which involves binding the free carboxyl groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is commonly used for this purpose (Satir et al., 2023; Vargas-bello-p et al., 2020). In addition to Ca, Zinc (Zn) can also be used to protect the oil (Faizah et al., 2019; Muktiani et al., 2020).

Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 84 enzymes, and is involved in DNA synthesis, growth, CO2 transport, essential fatty acid 85 metabolism, and protein and nucleic acid synthesis (Elamin et al., 2013). Studies in vitro 86 87 observed that supplementing zinc in ruminal fluid increased cellulose digestibility 88 (Martínez & Church, 1970), and concentrations of total volatile fatty acids (VFA) and 89 acetate (Chen et al., 2019). Research of Wang et al. (2021) found that supplementation 20-30mg/kg DM Zn sulfat led to increase nutrient digestibility and ruminal fermentation. 90 91 In livestock, Zinc is involved in multiple biochemical functions such as bone 92 metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and spermatogenesis, immune function, and appetite regulation via its effects on the central 93 94 nervous system (Duffy et al., 2023). The most important of Zinc are cellular respiration, 95 cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup 96 et al., 2017). The use of Zn as an oil protector has a double benefit, namely protecting 97

unsaturated fatty acids from the biohydrogenation process of rumen microbes while
providing Zn needed for rumen microbes and livestock, whose needs increase in the early
stages of lactation.

The purpose of this study is to determine the effects of supplementing protected 101 102 palm oil Zinc soap on feed fermentability, digestibility, and the profile of unsaturated fatty acids in the rumen in vitro. The benefit of this research is to identify the most 103 efficient form of palm oil supplementation for enhancing energy supply and improving 104 105 the profile of unsaturated fatty acids in the rumen without disrupting feed fermentability in vitro. The discovery of the most effective palm oil management method provides a 106 practical alternative solution to energy and zinc deficiencies in dairy cattle, especially for 107 small-scale farmers. 108

- 109
- 110

MATERIALS AND METHODS

111

Zinc Soap and Feed Preparation

112 The preparation of zinc soap was carried out according to (Cabatit, 1979). The 113 palm oil used to make Zinc soap is commercial palm oil which generally sold on the 114 market. The Zinc soap of palm oil was made based on saponification number. Palm oil is measured for its saponification number and the KOH added is proportional to the 115 saponification number. In order to protect palm oil, zinc chloride (ZnCl2) is added in an 116 amount equal to the KOH required to soak the oil, which is determined by the outcomes 117 of reaction stoichiometric calculations. Palm oil was put into a glass beaker and incubated 118 119 in a water bath at 90°C. KOH that has been dissolved in ethanol is added to hot oil and stirred until the oil is completely hydrolyzed. Next, add the ZnCl2 solution and mix 120 continuously until a paste forms. The final step is to remove the remaining KOH by 121

adding water and washing using a centrifuge. This process produces cream soap called
Zinc soap of palm oil (ZPOS). The nutrient content of ZPOS is 24.36% ether extract,
4.2% crude fiber, 4.94% Zn and gross energy 5257 kcal/kg.

The feed consists of forage and concentrate that has been formulated for feeding lactating dairy goats with a content of crude protein (CP) 14% and total degestible nutrients (TDN) 63%. The feed was composed of corn straw, soybean hulls, rice bran, pollard, cassava waste meal, coconut meal, soybean meal and molasses. The composition of ingredients and nutrient content of the ration as shown in Table 1.

- 130
- 131

In Vitro Experiment

The experiment was designed using a completely randomized design with 4 132 treatments and 5 replications. The treatments tested were T0 = basal diet without 133 supplementation, T1 = basal diet + 5% palm oil (PO), T2 = basal diet + 5% partially 134 135 ZPOS (75% ZPOS+25% PO), and T3 = basal diet + 5% ZPOS. Rumen liquid as a source 136 of inoculum was taken from female goats with fistulas that belongs to the Faculty of 137 Animal and Agricultural Sciences Diponegoro University. The goats were given a dietary trial following the ration for in vitro substrate for 1 week before rumen liquid was taken. 138 Rumen liquid was collected before morning feeding from a fistulated rumen. The rumen 139 liquid was filtered using cheese cloth and placed into a 39 °C flasks under anaerobic 140 conditions. 141

In vitro experiments were carried out according to the method of Tilley and Terry (1963). Into the fermenter tube, put 0.55 grams of feed samples from each treatment then added 40 ml of McDaugall's solution and 10 ml of rumen liquid. The fermentor cylinder was flowed by CO2 gas and closed to anaerobic conditions. The fermentor tube was
incubated in a 39°C water temperature.

147

148

Nutrien Digestibility

149 The digestibility of nutrients including dry matter (DMD), organic matter (OMD), crude protein (CPD), ether extract (EED) and crude fiber (CFD) was measured through 2 150 stages of incubation, namely fermentative and enzymatic. First stage, the fermentor tube 151 was incubated in a 39°C water temperature for 2x24 hours, and process was stopped by 152 immersing the fermenter tube in ice water for 20 minutes. Then the tube was centrifuged 153 for 15 minutes at a speed of 3,000 rpm and the supernatant was discarded. Second stage, 154 155 the HCL pensin solution was added 50 ml into the tube and reincubated for 2x24 hours in a 39°C water temperature under aerobic conditions. The sample was filtered with 156 Whatman No.41 filter paper using a vacuum pump. The filter results were analyzed by 157 158 DM, Ash, CP, EE and C, NDF, and ADF (AOAC, 2012) to calculate nutrient digestibility 159 values. Fermentation is also carried out without feed samples called blanks. Nutrien 160 digestibility samples are calculated by the formula :

161 Nutrient Digestibility (%) =
$$\frac{(\text{Nutrient sample, g} - (\text{Nutrient residue, g} - \text{Nutrient blank, g})}{\text{nutrient sample, g}}x100$$

162

163

pH value, VFA, NH3 and Methane production

The process of measuring pH, VFA, and NH3 followed the same procedure as that for nutrient digestibility, but with the fermentation stopped at the 4-hour mark. After centrifuging the fermentor tube at 3,000 rpm for 15 minutes, the supernatant was taken to measure the rumen pH, NH3, and total and partial VFA concentrations. A digital pH meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample was tested three times. NH3 levels were determined using a spectrophotometer, employing a spectrophotometric method based on the catalyzed endophenol reaction to form a stable blue compound (Chaney & Marbach, 1962). The production of partial VFAs (acetic acid, propionate, butyrate) was measured using gas chromatography, following the General Laboratory Procedures (1966). The VFA sample production was then calculated using the specified formula:

175 Partial VFA (mM) =
$$\frac{\text{sample area x standard concentration x 1000}}{(\text{standard area x MW})}$$

The methane gas concentration and Energy conversion efficiency was determined by calculating the VFA stockiometry, which was the estimation using the formula Orskov and Ryle (1990). The formula used for methane concentration were : Methane (mM) = 0.5 (% Asetate) - 0.25 (% Propionate) + 0.5 (% Butirate). Energy conversion efficiency was calculated based on the stockyometry of the carbohydrate fermentation reaction from hexose to VFA (acetate, propionate and butyrate). The calculation formula used was:

182
$$E(\%) = \frac{(0,622 \text{ pA} + 1,091 \text{ pP} + 1,558 \text{ pB} \text{ pA} + \text{ pP} + 2 \text{ pB})}{\text{pA} + \text{pP} + 2\text{pB}} x100$$

183

184

Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid

To calculate protozoa, microbial protein and fatty acid concentrations in the rumen liquid, the fermentation process was carried out for 24 hours. The populations of protozoa were calculated following the procedures of Ogimoto and Imai (1981). The solution used was methil formalin saline which was made from a mixture of 100 ml 35% formaldehyde, 2 g tryhan blue, 9 g NaCl and 900 ml aquades. The number of protozoa was calculated by using a microscope at magnification 100 times. Measurement of rumen liquid protein microbes using the method of Makkar et al. (1982) on the principle of gradual

192	centrifugation. The fatty acid profile of rumen liquid was analyzed using a gas
193	chromatograph (Model GC-14A, Shimadzu Corporation, Kyoto, Japan). Samples were
194	stored at -20°C until analysis. Following the method of Cocks and Rede (1966), the fatty
195	acid composition was determined by converting oil to fatty acid methyl esters. This
196	involved adding 950 μL of n-hexane, 50 mg of oil, and 50 μL of sodium methoxide. The
197	peaks of the fatty acid methyl esters were identified by comparing their retention times
198	with those of authentic standards. The relative percentage of each fatty acid was
199	calculated based on its peak area relative to the total peak area of all fatty acids in the
200	sample. Fatty acids were categorized into short-chain fatty acids (SA), ranging from C4
201	to C15, and long-chain fatty acids (LA), which are greater than C16.
202	
203	Statistical Analysis
204	The data were analyzed using a completely randomized design in SPSS 16.

205 Duncan's Multiple Range Test with significance was set at p>0.05 to compare treatments 206 when a significant effect was observed.

- 207
- 208

RESULTS

Feed Fermentability

The fermentability of feed is determined by various factors such as pH, total protozoa count, microbial protein content, NH3 concentration, and total VFA production in rumen liquid. These parameters are detailed in Table 2. The pH levels across all treatments fell within the normal range of 6.75-6.82. While the treatment did not significantly affect pH (p>0.05), notable differences (p<0.05) were observed in the total protozoa count, microbial protein content, total VFA, and NH3 concentrations. Palm oil supplementation had the most pronounced impact, notably reducing protozoa count and

216	microbial protein. When zinc soap palm oil protection (T2) was partially supplemented,
217	it led to higher microbial protein and VFA production compared to feed supplemented
218	with total zinc palm oil soap, although the difference was not significant.
219 220 221 222 223	Feed Digestibility Table 3 presents the feed digestibility results from the palm oil zinc soap
224	supplementation treatment. Statistical analysis revealed no significant differences in the
225	digestibility of dry matter (DMD), organic matter (OMD), and crude protein (CPD) due
226	to the palm oil zinc soap treatment. However, there were significant differences (P<0.05)
227	in the digestibility of ether extract (EED), crude fiber (CFD), neutral detergent fiber
228	(NDFD), and acid detergent fiber (ADFD). Both non-protected and protected palm oil
229	increased EED. Improvements in fiber digestibility (CFD, NDFD, and ADFD) were only
230	observed with zinc soap supplementation (T2 and T3), whereas non-protected palm oil
231	showed no difference from the control. The highest fiber digestibility was achieved with
232	partial zinc soap supplementation (T2), though it was not significantly different from the
233	total protection zinc soap supplementation (T3).
234	
235	Relative Proportion of VFA
236	Palm oil supplementation significantly influenced the partial VFA production of
237	acetate, propionate, butyrate, the A/P ratio, and methane (P<0.05), but did not impact the
238	efficiency of hexose energy conversion into VFA. The relative proportions of VFAs in
239	this study were 59%-62% acetic acid, 24%-29% propionic acid, and 12%-13% butyric
240	acid. According to Duncan's Mulitiple Range Test results, both partial (T2) and total (T3)
241	ZSPO supplementation resulted in higher levels of acetate, propionate, and butyrate

compared to PO supplementation (T1) and the control (T0). Conversely, PO and ZSPO
supplementation produced a lower A/P ratio. The estimated methane production also
decreased with PO and ZSPO supplementation.

- 245
- 246

Fatty Acids in Rumen Liquid

Table 5 outlines the fatty acid composition in rumen liquid. The control diet 247 primarily contained short-chain fatty acids (SA), with a notably higher concentration of 248 C4 compared to other treatments (P<0.05). Supplementation with palm oil (PO and 249 ZSPO) led to increased levels of palmitate (C16:0), stearate (C18:0), and oleate (C18:1) 250 relative to the control (P < 0.05). However, the proportion of stearate was significantly 251 lower with ZSPO supplementation (P<0.05). Unsaturated fatty acids, particularly cis-9 252 18:1, trans-11 18:1, linoleate (18:2), linolenic acid (18:3), and EPA (20:5), showed a 253 significant increase in the 75% and 100% ZSPO treatments (P<0.01), while the increase 254 255 in DHA was not statistically significant.

256 These fatty acids are classified into various categories, including short-chain fatty 257 acids (SCFAs), long-chain fatty acids (LCFAs), saturated fatty acids (SFAs), unsaturated 258 fatty acids (UFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). According to Table 5, the control diet exhibited a higher total content of 259 SCFAs compared to the diets supplemented with PO and ZSPO (P<0.05), while it yielded 260 a greater amount of LCFAs. SFAs showed no significant differences among all 261 treatments, whereas ZSPO supplementation demonstrated an ability to elevate UFAs. 262 263 Notably, the 100% ZSPO supplementation resulted in higher levels of both MUFAs and 264 PUFAs compared to the other treatments.

265

DISCUSSION

266

Feed Fermentability

The pH is one of the crucial factors in assessing rumen health. The findings 267 268 indicated that adding palm oil and protected palm oil zinc soap did not disrupt the rumen fermentation process. Similar results have been reported in other studies, such as those 269 270 conducted by Adeyemi et al. (2015), Amanullah et al. (2022), and Roy et al. (2017). The reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil, 271 particularly lauric acid. According to Rahman et al., (2022), palm oil typically contains 272 about 44% lauric acid (C12:0). Lauric acid is known to have antiprotozoal properties, 273 which can potentially disrupt protozoan cell membranes and inhibit their growth (Santos 274 et al., 2022). 275 276 Ibrahim et al. (2021) discovered that supplementing with palm oil altered the rumen microbial population in ruminants, potentially affecting their overall protein 277 synthesis capability. Sears et al. (2024) reported that oleic acid significantly reduces 278 279 Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids 280 could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting 281 in decreased protein synthesis. The use of zinc soap palm oil protection, both partially

(T2) and fully (T3), can mitigate the harmful effects of unsaturated fatty acids, enabling
microbes to develop as effectively as in the control group.

Yanza et al. (2021) found that ruminants given protected medium chain fatty acids (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to increased propionate production. Propionate is formed from the breakdown of glycerol during fat hydrolysis. The NH3 concentration in the T2 treatment was the lowest among all treatments, while microbial protein production was the highest. This indicates that
NH3 is utilized for microbial protein synthesis (Getabalew & Negash, 2020).

291

292

Feed Digestibility

293 The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were unaffected by 5% non-protected palm oil zinc soap supplementation, indicating that this 294 level of supplementation is safe for rumen microbial growth. These results are consistent 295 with previous research, which found that 6% supplementation with vegetable oils (olive 296 oil, sunflower oil, and linseed oil) yielded OMD, NDFD, and ADFD values comparable 297 to the control, although linseed oil resulted in higher digestibility than sunflower oil 298 299 (Vargas-bello-p et al., 2020). The effect of oil supplementation on digestibility is highly dependent on the nutrient composition of the feed and the fatty acid profile of the oil. The 300 experimental feed in this study, characterized by high fiber content and low ADF 301 302 (13.77%), supports the proliferation of cellulolytic microbes. A high-fiber diet may 303 mitigate the potential negative impact of oil on fiber digestion by rumen microbes 304 (Benchaar et al., 2015). Both non-protected (T1) and protected (T2 and T3) palm oil 305 increased EED, supporting the conclusion that palm oil can be use d as an energy supplement without compromising rumen feed fermentability. 306

A notable finding from this research is that both partial and total zinc soap supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and ADFD. This effect is likely due to the fat and zinc content in palm oil. Palm oil contains high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki et al., 2015). Recent findings by Sears et al. (2024) indicate an increase in Prevotella and Fibrobacter populations in response to palmitic acid supplementation. This suggests that cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby increasing
energy availability for metabolic processes. Furthermore, zinc is crucial for various
metabolic functions in rumen microbes.

Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing 316 317 enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain et al., 2016; Unival et al., 2017). It is indispensable for preserving the structural and 318 functional integrity of over 2000 transcription factors and 300 enzymes. It can be 319 320 contended that virtually all metabolic pathways are reliant, to varying degrees, on at least one Zn-dependent protein (Ranasinghe et al., 2015). Recent research by Fellner et al. 321 (2021) elucidated that Zn supplementation precipitated increased acetate production and 322 323 a heightened acetate/prothionate ratio. This delineates an augmented fiber digestion process facilitated by cellulolytic bacteria, consequent to heightened microbial protein 324 synthesis. This conclusion aligns with findings indicating elevated levels of microbial 325 326 protein compared to the control, specifically 13.37 (T2) and 11.41 (T3) versus 8.01 in the 327 control feed (Table 3).

328

329

Relative Proportion of VFA

The relative proportion of acetate observed is slightly lower than that reported by Anzhany et al. (2024), which ranged from 69% to 72%, while the proportions of propionate and butyrate are comparatively higher. According to Amanullah et al. (2022), palm oil supplementation modifies the rumen environment, thereby altering the ratio of cellulolytic to amylolytic microbes. Both partial and total ZSPO supplementation resulted in significantly higher acetate production compared to non-protected palm oil (P<0.05). These findings are consistent with the increased microbial protein levels observed with ZSPO supplementation, suggesting enhanced bacterial growth. Zinc (Zn) is an essential
trace mineral that functions as a cofactor for over 300 enzymes, and is involved in DNA
synthesis, growth, CO2 transport, essential fatty acid metabolism, and protein and nucleic
acid synthesis (Elamin et al., 2013).

341 The increase in propionate in the ZSPO supplementation treatment resulted from the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted 342 into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated 343 fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids 344 from rumen bio-hydrogenation and increasing the duodenal flows of mono and 345 polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with 346 347 studies showing that ZSPO supplementation leads to an increase in protozoan populations (Table 4). Zinc supplementation has been associated with shifts in rumen volatile fatty 348 acid profiles, notably an increase in propionate and a reduction in the acetate-to-349 350 propionate ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane 351 production and a lower A/P ratio are advantageous, as higher propionate levels provide a 352 carbon framework and synthetic energy for livestock.

- 353
- 354

Fatty Acids in Rumen Liquid

The introduction of oil supplementation led to a reduction in the proportion of short-chain fatty acids within rumen liquid, while concurrently increasing the presence of long-chain fatty acids. This transition is attributed to the predominant presence of linoleic acid (LA) in palm oil, constituting 98.3% of its composition, with the remaining 1.7% comprising short-chain fatty acids. Among the long-chain fatty acids, comprising 98.3% of the total, nearly half (49.9%) are unsaturated fatty acids (UFAs), comprising 39.2% monounsaturated fatty acids (MUFAs) and 10.5% polyunsaturated fatty acids (PUFAs) (Mancini et al., 2015). The prevalence of saturated fatty acids (SFAs) in palm oil contributed to a consistent range of ruminal saturated fatty acid levels, varying insignificantly between 70.90% and 79.05% (Table 6).

365 Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities, namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and 366 glycerol. Unsaturated fatty acids including oleic acid (18:1) undergo a biohydrogenation 367 368 process, namely being converted into saturated fatty acids stearic acid (18:0) in the rumen by bacteria (Buccioni et al., 2012). Mosley et al. (2002) who tracked the biohydrogenation 369 process of oleic acid found that oleate in the rumen can change into trans and cis forms 370 371 because rumen microbes produce cis/trans isomesase enzymes, and there is an isomerase that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate) to trans 18:1. The 372 dominant biohydrogenation process that occurs in the rumen is bacteria hydrogenate 373 374 polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 fatty acids, then 375 trans 18:1 fatty acids into stearic acid. Both trans-11 18:1 and cis-9, trans-11 CLA found 376 in milk fat have been shown to have health effects (Lock et al., 2006).

Consistent with our study's findings, Mosley et al. (2002) observed that 377 supplementation with ZSPO (T2 and T3) resulted in elevated levels of trans18:1 and cis 378 18:1, alongside reduced stearate (18:0) concentrations compared to non-protected oil 379 supplementation (T1). Amanullah et al. (2022) conducted a comparative analysis 380 involving corn oil, linseed oil, and Ca salt (protected C18:2n-6), revealing that protected 381 382 fatty acids (Ca Salt) led to diminished stearate levels but higher proportions of MUFA and PUFA. These findings are consistent with the research by Satir et al. (2023), which 383 demonstrated that 3% protected palm oil supplementation can increase the content of 384

palmitic acid (SFA) and oleic acid (MUFA). Stearate is the final product of the 385 biohydrogenation of oleic, linoleic, and linolenic acids. This indicates a complete 386 387 inhibition of the biohydrogenation process in the ZSPO treatment. The protection of polyunsaturated fatty acids through saponification involves bonding the carboxyl group 388 389 with zinc, resulting in the inhibition of isomerization, which is a prerequisite for the hydrogenation of unsaturated fatty acids into saturated fatty acids. This is reflected in the 390 higher proportion of MUFA in the ZSPO treatment compared to PO and the control 391 (Table 6). The substantial presence of PUFA, notably EPA and DHA, underscores Zinc's 392 role in the elongation and desaturation process, facilitated by the formation of arachidonic 393 acid (20:4) through delta-6-desaturase (D6D) and delta-5-desaturase (D5D) enzymes 394 (Ridgway, 2016). Zinc's indispensability is further highlighted as a pivotal mineral 395 cofactor for D6D and D5D enzymes (Noland & Drisko, 2020). 396

Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen, particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZSPO supplementation holds potential for enhancing the quality of meat and milk fat.

402

- 404
- 405
- 406
- 407
- 408 409
- 410

411	CONCLUSION
412	Based on the results of this research, it can be concluded that zinc soap from palm
413	oil (ZPOS) can be developed as a source of energy and organic Zn. Its supplementation
414	in feed as much as 5% has beneficial effects, namely increasing fermentability,
415	digestibility, MUFA and EPA. It was indicated that partial administration of ZPOS (75%)
416	resulted in higher protozoa populations and fiber digestibility. So it can be considered in
417	trials on dairy livestock.
418	
419	CONFLICT OF INTEREST
420	The authors declare that there is no conflict of interest with any financial, personal,
421	or other relationships with other people or organization related to the material discussed
422	in the manuscript.
423	
424	ACKNOWLEDGEMENT
425	The research was funded by Faculty of Animal and Agricultural Science,
426	Diponegoro University.
427	
428	REFERENCES
429	Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A.
430	Karsani, & A. Q. Sazili. 2015. Influence of Carotino Oil on in Vitro Rumen
431	Fermentation, Metabolism and Apparent Biohydrogenation of Fatty Acids. Animal
432	Science Journal. 86(3):270-78. https://doi.org/10.1111/asj.12279.
433	Amanullah, S. M., Seong-shin Lee, D. Hand, Vi. Paradhipta, Young-hoo Joo, Dong-
434	hyeon Kim, Pil-nam Seong, Seung-min Jeong, & Sam-churl Kim. 2022. Impact

- 435 of Oil Sources on In Vitro Fermentation , Microbes , Greenhouse Gas , and Fatty
 436 Acid Profile in the Rumen. Fermentation. 8(5):242.
 437 https://doi.org/10.3390/fermentation8050242.
- Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid Biohydrogenation,
 Fermentation, and Digestibility of Ration Containing Napier and King Grass with
 Different Harvest Ages and Altitudes: In Vitro Study. Tropical Animal Science
 Journal. 47(1):68–78. https://doi.org/10.5398/tasj.2024.47.1.68.
- 442 AOAC. 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical
 443 Chemists: Washington, DC.
- Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil
 Supplementation to Dairy Cows Fed Diets Based on Red Clover Silage or Corn
 Silage: Effects on Methane Production, Rumen Fermentation, Nutrient Digestibility,
 N Balance, and Milk Production. Journal of Dairy Science. 98(11):7993–8008.
- 447 N Balance, and Milk Froduction. Journal of Daily Science. 98(11)./993–8008
 448 https://doi.org/10.3168/jds.2015-9398.
- Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid
 Metabolism in the Rumen: New Insights on Lipolysis and Biohydrogenation with
- 451 an Emphasis on the Role of Endogenous Plant Factors. Animal Feed Science and

452 Technology. 174:1–25. https://doi.org/10.1016/j.anifeedsci.2012.02.009.

- 453 Cabatit, B. C. 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press: Manila.
- 454 Chaney, A. L., & E. P. Marbach. 1962. Modified Reagents for Determination of Urea
 455 and Ammonia. Clinical Chemistry. 8(2):130–32.
 456 https://doi.org/10.1093/clinchem/8.2.130.
- 457 Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of Zinc-Bearing
- 458 Palygorskite on Rumen Fermentation in Vitro. Asian-Australasian Journal of

- 459 Animal Sciences. 32(1):63–71. https://doi.org/10.5713/ajas.17.0920.
- 460 Cocks, L. V., & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis.
- 461 Academic Press: London.
- 462 Duffy, R., M. Yin, & L. E. Redding. 2023. A Review of the Impact of Dietary Zinc on
- 463 Livestock Health. Journal of Trace Elements and Minerals. 5(June):100085.
 464 https://doi.org/10.1016/j.jtemin.2023.100085.
- 465 Elamin, K. M., N. A. Dafalla, K. A. Abdel Atti, & A. A. Tameem Eldar. 2013. Effects
- of Zinc Supplementation on Growth Performance and Some Blood Parameters of
 Goat Kids in Sudan. International Journal of Pure and Applied Biological Research
 and Sciences, 1(1):1–8.
- Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The Effect of Total or Partial
 Protected Vegetable Oil Supplementation on In Vitro Digestibility, Feed
 Fermentability and Energy Efficiency. Buletin Peternakan. 43(3):171–78.
 https://doi.org/10.21059/buletinpeternak.v43i3.43231.
- Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of Supplemental
 Zinc on Ruminal Fermentation in Continuous Cultures. Applied Animal Science.
 37(1):27–32. https://doi.org/10.15232/aas.2020-02104.
- 476 Gao, Jian, Meng-zhi Wang, Yu-jia Jing, Xue-zhao Sun, Tian-yi Wu, & Liang-feng
- 477 Shi. 2016. Impacts of the Unsaturation Degree of Long-Chain Fatty Acids on the
- 478 Volatile Fatty Acid Profiles of Rumen Microbial Fermentation in Goats in Vitro.
- Journal of Integrative Agriculture. 15(12):2827–33. https://doi.org/10.1016/S2095-
- 480 3119(16)61418-1.
- 481 General Laboratory Procedures. 1966. Departement of Dairy Science. University of
 482 Wisconsin: Madison.
 - 20

483 Getabalew, Mebrate, & Ayele Negash. 2020. Nitrogen Metabolism and Recycling in Ruminant Animals: A Review College of Agricultural and Natural Resources 484 485 Science Academic Journal of Nutrition. 9(3):29-38. https://doi.org/10.5829/idosi.ajn.2020.29.38. 486 487 Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The Role of Zinc, Manganse and Copper in Rumen Metabolism and Immune Function: A Review Article. Open 488 Journal of Animal Sciences. 6:304–24. https://doi.org/10.4236/ojas.2016.64035. 489 490 Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, Su Chui Len Candyrine, W. N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of 491 Vegetable Oil Supplementation on Rumen Fermentation and Microbial Population 492 in Ruminant: A Review. Tropical Animal Health and Production. 53(4):1-11. 493 https://doi.org/10.1007/s11250-021-02863-4. 494 Khaskheli, A. A., & L. Chou. 2020. Evaluation of Fatty Acids Composition, 495 496 Metabolizable Energy, Nutrients Digestibility of Crude Palm Oil Fat Crystals in 497 Turkeys. Animal Feed Science and Technology. 270(October):114734.

498 https://doi.org/10.1016/j.anifeedsci.2020.114734.

- Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of
 Sunflower Oil Supplementation as Unsaturated Fatty Acid Source on Rumen
 Fermentability and Performance of Lactating Garut Ewes. Journal of the Indonesian
 Tropical Animal Agriculture. 42(3):185–93.
 https://doi.org/10.14710/jitaa.42.3.185-193.
- Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-Chemical Properties, Fatty
 Acid Profile and Nutrition in Palm Oil. Journal of Paramedical Sciences (JPS).
 6(3):117–34.

507	Lock, A. L., K. J. Harvatine, J. K. Drackley, & D. E. Bauman. 2006. Concepts in Fat
508	and Fatty Acid Digestion in Ruminants. Proc Intermountain Nutr Conf.
509	(January):85–100.
510	Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple
511	Determination of Microbial Protein in Rumen Liquor. J. Dairy Sci. 65(11):2170–73.
512	https://doi.org/10.3168/jds.S0022-0302(82)82477-6.
513	Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono.
514	2015. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects
515	on Health. Molecules. 20:17339-61. https://doi.org/10.3390/molecules200917339.
516	Martínez, Andres, & D. C. Church. 1970. Effect of Various Mineral Rumen Cellulose
517	Elements. Journal of Animal Science. 31(5):982–90.
518	https://doi.org/10.2527/jas1970.315982x.
519	Mosley, E. E., G. L. Powell, M. B. Riley, & T. C. Jenkins. 2002. Biohidrogenasi
520	Mikroba Asam Oleat Menjadi Trans Isomer Secara in Vitro. Jurnal Penelitian Lipid.
521	43:290–96.
522	Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of Different Vegetable Oils
523	on In Vitro Ruminal Fermentability and Nutrient Digestibility in Ettawah Crossbred
524	Goat.AnimalProduction.21(1):22-29.
525	https://doi.org/10.20884/1.jap.2019.21.1.689.
526	Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan.
527	2015. The Role of Ciliate Protozoa in the Rumen. Frontiers in Microbiology. 6:1-
528	14. https://doi.org/10.3389/fmicb.2015.01313.

Noland, D., & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition
Therapy. L. Wagner (Eds). Humana Press: Switzerland.

- 531 Ogimoto, Keiji, & Soichi Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific
 532 Societies Press.
- 533 Orskov, E. R., & M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied
 534 Science: London (UK).
- 535 Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui
- J. B. Bessa, & L. Lopes-da-costa. 2022. Effects of Feeding Rumen-Protected
- 537Linseed Fat to Postpartum Dairy Cows on Plasma n-3 Polyunsaturated Fatty Acid
- 538 Concentrations and Metabolic and Reproductive Parameters. J. Dairy Sci. 105:361–
- 539 74. https://doi.org/10.3168/jds.2021-20674.
- Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The Composition of Fatty
 Acids in Several Vegetable Oils from Indonesia. Biodiversitas. 23(4):2167–76.
 https://doi.org/10.13057/biodiv/d230452.
- 543 Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P.
- Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of Zinc
 Supplementation on Serum Lipids: A Systematic Review and Meta-Analysis.
 Nutrition and Metabolism. 12(1). https://doi.org/10.1186/s12986-015-0023-4.
- 547 **Ridgway, N. D.** 2016. Bichemistry of Lipid, Lipoprotein and Membranes. R.S. McLeod
- 548 (Eds). Elsevier: Netherland.
- Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of Different Vegetable Oils on
 Rumen Fermentation and Conjugated Linoleic Acid Concentration in Vitro.
 Veterinary World. 10(1):11–16. https://doi.org/10.14202/vetworld.2017.11-16.
- 552 Santos, Francisco A., Gabriela S. Cruz, Filipe A. Vieira, Bruno R. S. Queiroz,
- 553 Cleverson D. T. Freitas, Felipe P. Mesquita, & Pedro F. N. Souza. 2022.
- 554 Systematic Review of Antiprotozoal Potential of Antimicrobial Peptides. Acta

- Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of Adding Rumen Protected
 Palm Oil in Diet on Milk Fatty Acid Profile and Lipid Health Indices in Kivircik
 Ewes. Tropical Animal Health and Production. 55:159.
 https://doi.org/10.1007/s11250-023-03580-w.
- 560 Sears, A., F. Hentz, J. de Souza, B. Wenner, Robert E. Ward, & F. Batistel. 2024.
- Supply of Palmitic, Stearic, and Oleic Acid Changes Rumen Fiber Digestibility and
 Microbial Composition. J. Dairy Sci. 107(2):902–16.
 https://doi.org/10.3168/jds.2023-23568.
- Shingfield, K. J., & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in
 Ruminants and Humans. Pp. 1–65 in Conjugated Linoleic Acids and Conjugated
 Vegetable Oils, In edited by B. Sels and A. Philippaerts (Eds). The Royal Society of
 Chemistry.
- 568 Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in
- the Animal Organism: A Review. Scientia Agriculturae Bohemica. 48(1):13–21.
 https://doi.org/10.1515/sab-2017-0003.
- 571 Swain, Partha S., Somu B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016.
- 572 Nano Zinc, an Alternative to Conventional Zinc as Animal Feed Supplement: A
 573 Review. Animal Nutrition. 2(3):134–41.
 574 https://doi.org/10.1016/j.aninu.2016.06.003.
- 575 Tilley, J. M. A., & R. A. Terry. 1963. A Two-Stage Technique for the in Vitro Digestion
- of Forage Crops. Grass and Forage Science. 18(2):104–11.
 https://doi.org/10.1111/j.1365-2494.1963.tb00335.x.
- 578 Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P.

⁵⁵⁵ Tropica. 236:106675. https://doi.org/10.1016/j.actatropica.2022.106675.

579 Faverdin. 2023. Genetic Relationships between Weight Loss in Early Lactation and Daily Milk Production throughout Lactation in Holstein Cows. J. Dairy Sci. 580 581 106:4799-4812. https://doi.org/10.3168/jds.2022-22813.

- Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017. 582
- 583 Comparative Efficacy of Zinc Supplementation from Different Sources on Nutrient Digestibility, Hemato-Biochemistry and Anti-Oxidant Activity in Guinea Pigs. 584 Livestock Science. 204:59–64. https://doi.org/10.1016/j.livsci.2017.08.009. 585
- 586 Vargas-bello-p, Einar, Lizbeth Esmeralda Robles-jimenez, Rafael Ayala-hern, Jose
- Romero-bernal, Nazario Pescador-salas, & Octavio Alonso. 2020. Effects of 587 Calcium Soaps from Palm, Canola and Safflower Oils on Dry Matter Intake, 588 Nutrient Digestibility, Milk Production, and Milk Composition in Dairy Goats. 589 Animals. 10(1728). https://doi.org/10.3390/ani10101728. 590
- Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L. 591
- 592 Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of Zinc Sulfate and Coated Zinc 593 Sulfate on Lactation Performance, Nutrient Digestion and Rumen Fermentation in 594 Holstein Dairy Cows. Livestock Science. 251(July 2020). 595 https://doi.org/10.1016/j.livsci.2021.104673.
- Wardeh, Muhammad Fadel. 1981. "Models for Estimating Energy and Protein 596 Utilization for Feeds: All Graduate Theses and Dissertations." Utah State University. 597 World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group - The 598
- World Bank: Washington- USA. 599

- 600 Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, Min Gao, H.
- Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The Effects of Dietary
- Medium-Chain Fatty Acids on Ruminal Methanogenesis and Fermentation in Vitro 602

603	and in Vivo: A Meta-Analysis. Journal of Animal Physiology and Animal Nutrition.
604	105(5):874-89. https://doi.org/10.1111/jpn.13367.
605	
606	
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	
625	
626	

Item	Composition
Ingredient :	
Corn straw	33.38
Soybean hull	12.25
Rice bran	7.42
Pollard	9.32
Cassava waste meal	9,93
Coconut meal	17.01
Soybean meal	6.98
Molases	3.00
Vitamin and mineral mixture	0.80
Nutrient composition :	
Dry matter (DM), %	84.68
Ash, %DM	8.63
Crude protein, %DM	14.32
Ether extract, %DM	4.43
Crude fiber, %DM	20.02
Calsium, %DM	0.33
Phospor, %DM	0.28
Zinc, mg/kg DM	16,93
Neutral detergent fiber, %DM	35.51
Acid detergent fiber, %DM	14.77
Total digestible nutrient (TDN) ¹ , %	63.15
¹ Total digestible nutrients (TDN) were calculated using T	
1.2120(PK) + 0.8352(BETN) + 2.4637(LK) + 0.4475(SK),	according to (Wardeh, 1981).
Table 2. The pH, total protozoa, microbial protein, N	NH3, and total VFA producti
rumen liquid due to supplementation of the	
	Treatment

Table 1. Ingredients and chemical composition of experimental diet (dry matter basis).

De serve et e s	Treatment			Treatment
Parameter	T0	T1	T2	Т3
pН	6,76	6,75	6,73	6,82
Protozoa (10^3 cel/ml)	98,14 ^a	32,57°	82,83 ^{ab}	69,31 ^b
Microbial protein (mg/ml)	13,01 ^a	9,37 ^b	13,37ª	11,41 ^{ab}
NH ³ (mM)	14,06 ^a	14,45 ^a	9,64 ^b	10,36 ^b
VFA (mM)	87,52 ^b	101,78 ^b	164,38ª	157,89ª

a,b different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal diet+partially ZPOS(75%
ZPOS+25%PO); T3= basal diet+5% ZPOS

638

639

640

641

of

⁶³⁷

Devenueter	Treatment			
Parameter	T0	T1	T2	T3
Digestibility :				
Dry matter (%)	64.06	63.82	67.20	69.24
Organic matter (%)	69.16	65.89	69.65	69.98
Crude protein (%)	68.69	67.99	66.39	65.11
Ether extract (%)	88.45 ^b	94.34ª	93.22ª	92.35ª
Crude fiber (%)	54.46 ^b	51.46 ^b	73.63ª	66.11 ^{ab}
Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03 ^a	64.62 ^{ab}
Acid detergent fiber (%)	45,12 ^b	44.56 ^b	65.81 ^a	53.76 ^{ab}

Tabel 3. Feed nutrient in vitro digestibility due to supplementation of the zinc soap palm oil (ZPOS).

644 ^{a,b} different superscripts at the same column indicate significant differences (P<0.05).

645 T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal diet+partially ZPOS (75%

646 POZS+25%PO); T3= basal diet+5% ZPOS

648 Table 4. Fermentability of feed due to palm oil supplementation in vitro

D (Treatment				
Parameter	Т0	T1	T2	Т3	
Acetate (mM)	41,17 ^b	51,10 ^b	59,31ª	65,80ª	
Propionate (mM)	15,91°	25,41 ^{bc}	28,73 ^a	29,89 ^a	
Butyrate (mM)	8,73 ^b	10,28 ^b	12,55ª	14,20 ^a	
A/P	2,59 ª	2,01 ^b	2,06 ^b	2,20 ^b	
Methan (mM)	31,87ª	28,04 ^b	28,58 ^b	29,57 ^{ab}	
Efficiency of energy conversion (%)	73,05	73,19	74,74	74,47	

649 ^{a,b} different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal diet+partially ZPOS (75% POZS+25%PO); T3= basal diet+5% ZPOS

Fatty Acids -	Treatment			
Fatty Actus	Τ0	T1	T2	T3
		%	fat	
Short chain Fatty Acids (SA)	1			
C4	7,34 ^b	5,34 ^a	5,27 ^a	2,36
C6	<0,1	<0,1	<0,1	<0,
C8, kaprilat	<0,1	<0,1	<0,1	<0,
C10, kaprat	<0,1	<0,1	<0,1	<0,
C12, laurat	1,38	1,15	1,22	1,
C13	0,3	0,17	<0,1	<0,
C14, miristat	2,19	1,85	2,3	2,0
C14:1	1,00	0,5	0,57	0,6
C15,	0,51	0,75	0,36	0,4
C15:1	0,34	0,23	0,16	0,2
Long chain Fatty Acids (LA)				
C16, palmitat	22,03 ^b	29,34 ª	29,23 ^a	31,14
C16:1, n7	1,02 ^b	1,04 ^b	1,36 ^{ab}	1,5
C17	0,39	0,23	0,23	0,2
C17:1	<0,1	<0,1	<0,1	<0,
C18, stearate	20,13 ^b	30,74 ^a	23,17 ª	21,5
trans 11 C18:1	12,55 °	17,84 ^b	26,16 ^a	28,05
cis 9 C18:1, oleat	1,09 ^b	1,43 ^{ab}	1,99 ^a	1,83
C18:2	1,04 °	1,31 ^{bc}	$1,6^{ab}$	1,86
C18:3	<0,1	<0,1	<0,1	<0,
C18:3, omega 6	0,22 ^b	0,26 ^b	0,45 ^a	0,53
C18:3,gamma linolenat	0,79	<0,1	0,38	0,4
C20	1,01	0,83	0,64	0,7
cis 11 C20:1	0,16	0,59	0,21	0,2
cis 11-14 C20:2	<0,1	<0,1	<0,1	<0,
C20:3	<0,1	<0,1	<0,1	<0,
C20:4, arakidonat	0,48 ^a	<0,1 ^b	<0,1 ^b	<0,1
C20:5, EPA	0,07 °	0,55 ^b	0,59 ^b	0,76
C21	0,38	0,31	0,2	0,2
C22, behenate	0,4	0,23	0,23	0,2
C22:1	<0,1	<0,1	<0,1	<0,
C22:6, DHA	3,19	4,81	4,57	4,5
C24	<0,1	<0,1	<0,1	<0,
C24:1, nervonat omega 9	<0,1	<0,1	<0,1	<0,

Table 5. Proportion of fatty Acids in rumen liquid due supplemented of zinc soap palm 668 Oil (ZPOS) In Vitro 669

^{a,b} different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal diet+partially ZPOS (75%

670 671 672 POZS+25%PO); T3= basal diet+5% ZPOS

673

675	Table 6. Proportion of short chain, long chain, saturated and unsaturated fatty acids in
676	rumen liquid due with supplemented of zinc soap palm Oil (ZPOS) In Vitro
677	

Fatty Acids	Treatment			
	T0	T1	T2	T3
		% fa	t	
Amount of fatty acids :				
SA	13,06 ^a	9,99 ^b	9,88 ^b	6,92 °
LA	64,95	89,51ª	81,01ª	83,09 ^a
SFA	79,05	71,94	72,53	70,9
UFA	20,95 ^b	28,06 ^a	27,47 ^a	29,1 ^a
MUFA	15,16 ^b	17,13 ^{ab}	19,88 ^a	21,82 ª
PUFA	5,79 °	6,93 ^{bc}	7,59 ^{ab}	8,08 ^a

 a,b different superscripts at the same column indicate significant differences (P<0.05).

SA= short chain fatty acids, LA= long chain fatty acids, SFA= saturated fatty acids, UFA= unsaturated fatty acids (UFA), MUFA= monounsaturated fatty acids, dan PUFA= polyunsaturated fatty acids.

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal diet+partially ZPOS (75%

682 POZS+25%PO); T3= basal diet+5% ZPOS

Anis Muktiani <anis.muktiani@gmail.com>

[TASJ] Revision Required of Your Manuscript

2 messages

Prof. Dr. Komang G Wiryawan <jurnal@apps.ipb.ac.id> To: Anis Muktiani <anismuktiani@gmail.com> Tue, Jun 25, 2024 at 8:21 AM

Dear Anis Muktiani:

It is my pleasure to inform you that your submission to Tropical Animal Science Journal, "Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability, Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid" had been examined by peer reviewers. Please find the comments and suggestions:

Submission URL: https://journal.ipb.ac.id/index.php/tasj/authorDashboard/submission/56357 Username: {\$authorUsername}

If you decide to revise the manuscript, please give a response or rebuttal against each point which are suggested by peer reviewers. The revised document should include revision note file in table form and revised manuscript in MS Word file. Please return back the documents to the editor within 14 days via OJS, we would be glad if you submit your revised manuscript as soon as possible.

If you have any questions, please contact me.

Prof. Dr. Komang G Wiryawan Tropical Animal Science Journal kgwiryawan@yahoo.com

Tropical Animal Science

Journal http://journal.ipb.ac.id/index.php/tasj

3 attachments

C-Manuscript TASJ-56357.docx
102K

C-Form C1_TASJ-56357.doc
 960K

C-Manuscript TASJ-56357_MB2.pdf

Anis Muktiani <anis.muktiani@gmail.com> To: "Prof. Dr. Komang G Wiryawan" <jurnal@apps.ipb.ac.id> Thu, Jun 27, 2024 at 8:45 AM

Thank you, I will do that. [Quoted text hidden]

Tropical Animal Science

Faculty of Animal Science Building, IPB University Jln. Agatis, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: https://journal.ipb.ac.id/index.php/tasj

PAPER EVALUATION

Paper Title: Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability, Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid

Comments (please use additional paper if more space is needed)

No	Comments	Author's response
Α	Editor	
1	Introduction	
	Please state the novelty clearly. The introduction should	
	contain problems, previous research, novelty statements, and	
	objectives.	
2	References	
	a) Please check the writing of references from journals and	
	books, also how to cite references in the text.	
	b) Please ensure that every reference cited in the text is also	
	present in the reference list (and vice versa).	
	c) Please ensure that the number of journal publications	
	published in the last 10 years is more than 80%.	
3	Tables 2-6: please provide the SEM data for all variables.	
B	Reviewer I (MB1)	
1	Title: Correct the title clearly	
2	Line 111-112, a dietary trial: Specify clearly the nutrient	
	content of the diet	
3	Conclusion: Make it more compact, and do not repeat the	
	statement of experimental result.	
С	Reviewer II (MB2)	
1	Please find the comments in the text.	

1	Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability,	
2	Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid	
3		
4	ABSTRACT	
5	The energy needs of dairy cows during the lactation period increase significantly-,	
6	and the essential mineral zinc is crucial for their metabolic, production, and reproductive	
7	processes, despite common deficiencies. This study aimed to evaluate the effects of	
8	energy and organic zinc supplements, specifically zinc palm oil soap (ZPOS), on	
9	fermentability, digestibility, and unsaturated fatty acid profiles in vitro. The four	
10	treatments were: T0 (basal diet without supplementation), T1 (basal diet + 5% palm oil,	
11	PO), T2 (basal diet + 5% partially ZPOS: 75% ZPOS + 25% PO), and T3 (basal diet +	
12	5% ZPOS). The inoculum source was rumen liquid from fistulated female dairy goats.	Commented [A1]: How many replicates?
13	The feed consisted of corn straw, soybean hulls, and concentrate (TDN 63%, CP 14%,	Commented [A2]: From how many goats?
14	NDF 35%). Our findings Results showed that both partial and full ZPOS supplementation	
15	(T2 and T3) resulted in higher VFA and microbial protein production, and lower NH3	
16	levels compared to the control (P<0.05). While DM, OM, and CP digestibility were	
17	unaffected by similar among the treatments, digestibility of EE, CF, NDF, and ADF was	
18	significantly higher (P<0.05), ZPOS supplementation increased acetate and propionate	Commented [A3]: Compared to what? Please be more specific.
19	levels but did not affect butyrate, reducing the A/P ratio and methane production. The PO	Commented [A4]: P-value?
20	treatment was dominated by stearate (C18:0), whereas the ZPOS treatments showed	
21	higher levels of trans 11 C18:1 and EPA compared to the control. In conclusion, adding	Commented [A5]: Please describe.
22	protected palm oil in the form of zinc soap enhances fermentability, digestibility, and	
23	MUFA content in rumen liquid.	Commented [A6]: Please describe.
24	Keywords: Palm oil, soap, Zinc, fermentability, fatty acid ruminal.	

1

25		
26	INTRODUCTION	
27	Adequate energy intake often becomes a challenge for high-producing dairy	
28	livestock, especially in early lactation. Energy requirements can be two to three times	
29	higher than the basic maintenance needs because it is used for tissue maintenance after	
30	giving birth and milk production (Khotijah et al., 2017). Energy deficiency has	
31	detrimental effects, including low production and weight loss in livestock (Tribout et al.,	
32	2023).	Commented [A7]: Is it similar between tropical and temperate regions? Please address such difference.
33	Palm oil is one of the most promising vegetable oils to be used as an energy source	
34	with gross energy (GE) content was 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is	
35	also easily obtainable, resistant to rancidity, and affordable. The global price of palm oil	
36	is \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/mt, coconut	
37	oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains high	
38	levels of unsaturated fatty acids, specifically oleic acid at oleic acid at 39.2% (Mancini et	Commented [A8]: The highest proportion is palmitic acid, which is SFA. Please also address here the palmitic acid in palm oil
39	al., 2015). Unsaturated fatty acids contribute to energy efficiency by reducing protozoa	including its roles or effects in the rumen.
40	(Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane (CH4) production	
41	and the acetate/propionate (A/P) ratio by increasing propionate production (Gao et al.,	
42	2016).	
43	However, oil supplementation also has negative effects. Fat particles tend to coat	

feed particles, which hinders the adhesion of rumen microbes, especially fibrolytic 44 45 microbes, thus reducing fiber digestibility (Sears et al., 2024). Rumen microbes defend against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty 46 acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014). 47

Palm oil used in animal feed must be protected to prevent biohydrogenation and to avoid disrupting rumen bacterial fermentation. It is essential to safeguard polyunsaturated fatty acids to preserve their biological roles, such as being structural components of biomembranes that uphold membrane integrity. Polyunsaturated fatty acids in biomembranes ensure membrane fluidity, which supports the activity of membrane-bound enzymes, facilitates intracellular metabolism, and enhances nutrient utilization efficiency in livestock (Pereira et al., 2022).

55 One effective method is saponification, which involves binding the free carboxyl 56 groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is 57 commonly used for this purpose (Satir et al., 2023; Vargas-bello-p et al., 2020). In 58 addition to Ca, Zinc (Zn) can also be used to protect the oil (Faizah et al., 2019; Muktiani 59 et al., 2020).

60 Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 enzymes, and is involved in DNA synthesis, growth, CO2 transport, essential fatty acid 61 metabolism, and protein and nucleic acid synthesis (Elamin et al., 2013). Studies in vitro 62 63 observed that supplementing zinc in ruminal fluid increased cellulose digestibility (Martínez & Church, 1970), and concentrations of total volatile fatty acids (VFA) and 64 acetate (Chen et al., 2019). Research of Wang et al. (2021) found that supplementation 65 66 20-30mg/kg DM Zn sulfat led to increase nutrient digestibility and ruminal fermentation. In livestock, Zinc is involved in multiple biochemical functions such as bone 67 metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and 68 69 spermatogenesis, immune function, and appetite regulation via its effects on the central nervous system (Duffy et al., 2023). The most important of Zinc are cellular respiration, 70 71 cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane

integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup
et al., 2017). The use of Zn as an oil protector has a double benefit, namely protecting
unsaturated fatty acids from the biohydrogenation process of rumen microbes while
providing Zn needed for rumen microbes and livestock, whose needs increase in the early
stages of lactation.

77	The purpose of this study wasis to determine investigate the effects of
78	supplementing protected palm oil Zinc soap on feed fermentability, digestibility, and the
79	profile of unsaturated fatty acids in the rumen in vitro. The benefit of this research is to
80	identify the most efficient form of palm oil supplementation for enhancing energy supply
81	and improving the profile of unsaturated fatty acids in the rumen without disrupting feed
82	fermentability in vitro. The discovery of the most effective palm oil management method
83	provides a practical alternative solution to energy and zinc deficiencies in dairy cattle,
84	especially for small-scale farmers.

Commented [A9]: Were there any other studies that use Zn soap in the rumen? Please describe here. Please also explain the novelty of this study in comparison to those relevant studies.

85

86 87

MATERIALS AND METHODS

Zinc Soap and Feed Preparation

88 The preparation of zinc soap was carried out according to (Cabatit, (1979). The palm oil used to make Zinc soap is was a commercial palm oil which generally sold on 89 90 the market. The Zinc soap of palm oil was made based on saponification number. Palm oil is measured for its saponification number and the KOH added is proportional to the 91 saponification number. In order to protect palm oil, zinc chloride (ZnCl2) is added in an 92 93 amount equal to the KOH required to soak the oil, which is determined by the outcomes of reaction stoichiometric calculations. Palm oil was put into a glass beaker and incubated 94 in a water bath at 90°C. KOH that has been dissolved in ethanol is added to hot oil and 95

96	stirred until the oil is completely hydrolyzed. Next, add the ZnCl2 solution and mix	
97	continuously until a paste forms. The final step is to remove the remaining KOH by	
98	adding water and washing using a centrifuge. This process produces cream soap called	
99	Zinc soap of palm oil (ZPOS). The nutrient content of ZPOS is 24.36% ether extract,	Commented [A10]: Is there any proof that the saponification profess is really working to produce ZPOS?
100	4.2% crude fiber, 4.94% Zn and gross energy 5257 kcal/kg.	
101	The feed consists of forage and concentrate that has been formulated for feeding	
102	lactating dairy goats with a content of crude protein (CP) 14% and total degestible	
103	nutrients (TDN) 63%. The feed was composed of corn straw, soybean hulls, rice bran,	
104	pollard, cassava waste meal, coconut meal, soybean meal and molasses. The composition	
105	of ingredients and nutrient content of the ration as shown in Table 1.	
106	In Vitro Experiment	
107	The experiment was designed using a completely randomized design with <u>four</u> 4	
108	treatments and $\frac{5-\text{five}}{1}$ replications. The treatments tested were T0 = basal diet without	
109	supplementation, T1 = basal diet + 5% palm oil (PO), T2 = basal diet + 5% partially	
110	ZPOS (75% ZPOS+25% PO), and T3 = basal diet + 5% ZPOS. Rumen liquid as a source	
111	of inoculum was taken from female goats with fistulas that belongs to the Faculty of	
112	Animal and Agricultural Sciences Diponegoro University. The goats were given a dietary	
113	trial following the ration for in vitro substrate for <u>one</u> ¹ week before rumen liquid was	
114	taken. Rumen liquid was collected before morning feeding from a fistulated rumen. The	
115	rumen liquid was filtered using cheese cloth and placed into a 39 °C flasks under	
116	anaerobic conditions.	
117	In vitro experiments were carried out according to the method of Tilley and Terry	
118	(1963). Into the fermenter tube, put 0.55 grams of feed samples from each treatment then	
119	added 40 ml of McDaugall's solution and 10 ml of rumen liquid. The fermentor cylinder	Commented [A11]: Please paraphrase the sentence into passive voice.

120	was flowed by CO2 gas and closed to anaerobic conditions. The fermentor tube was	
121	incubated in a 39°C water temperature.	
122	Nutrien <mark>t</mark> Digestibility	
123	The digestibility of nutrients including dry matter (DMD), organic matter (OMD),	
124	crude protein (CPD), ether extract (EED) and crude fiber (CFD) was measured through	
125	two2 stages of incubation, namely fermentative and enzymatic. First stage, the fermentor	
126	tube was incubated in a 39°C water temperature for $2x24$ hours, and process was stopped	
127	by immersing the fermenter tube in ice water for 20 minutes. Then the tube was	
128	centrifuged for 15 minutes at a speed of 3,000 rpm and the supernatant was discarded.	
129	Second stage, the HCL pensin solution was added 50 ml into the tube and reincubated for	
130	2x24 hours in a 39°C water temperature under aerobic conditions. The sample was filtered	
131	with Whatman No.41 filter paper using a vacuum pump. The filter results were analyzed	
132	by DM, Ash, CP, EE and C, NDF, and ADF (AOAC, 2012) to calculate nutrient	
133	digestibility values. Fermentation is also carried out without feed samples called blanks.	
134	Nutrien digestibility samples are calculated by the formula :	
135	Nutrient Digestibility (%)	
136	= $\frac{(\text{Nutrient sample, g} - (\text{Nutrient residue, g} - \text{Nutrient blank, g})}{\text{nutrient sample, g}}x100$	
137		
138	pH value, VFA, NH3 and Methane production	
139	The process of measuring pH, VFA, and NH3 followed the same procedure as that	
140	for nutrient digestibility, but with the fermentation stopped at the 4-hour mark. After	
141	centrifuging the fermentor tube at 3,000 rpm for 15 minutes, the supernatant was taken to	
142	measure the rumen pH, NH3, and total and partial VFA concentrations. A digital pH	
143	meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample	

was tested three times. NH3 levels were determined using a spectrophotometer,
employing a spectrophotometric method based on the catalyzed endophenol reaction to
form a stable blue compound (Chaney & Marbach, 1962). The production of partial VFAs
(acetic acid, propionate, butyrate) was measured using gas chromatography, following
the General Laboratory Procedures (1966). The VFA sample production was then
calculated using the specified formula:

150 Partial VFA (mM) = $\frac{\text{sample area x standard concentration x 1000}}{(\text{standard area x MW})}$

The methane gas concentration and Energy conversion efficiency was determined by calculating the VFA stoichkiometry, which was the estimation using the formula Orskov and Ryle (1990). The formula used for methane concentration were : Methane (mM) = 0.5 (% Acsetate) - 0.25 (% Propionate) + 0.5 (% Butyirate). Energy conversion efficiency was calculated based on the stockyometry of the carbohydrate fermentation reaction from hexose to VFA (acetate, propionate and butyrate). The calculation formula used was:

158
$$E(\%) = \frac{(0,622 \text{ pA} + 1,091 \text{ pP} + 1,558 \text{ pB} \text{ pA} + \text{ pP} + 2 \text{ pB})}{\text{pA} + \text{pP} + 2\text{pB}}x100$$

- 159
- 160

Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid

To calculate protozoa, microbial protein and fatty acid concentrations in the rumen liquid, the fermentation process was carried out for 24 hours. The populations of protozoa were calculated following the procedures of Ogimoto and Imai (1981). The solution used was methil formalin saline which was made from a mixture of 100 ml 35% formaldehyde, 2 g tryhan blue, 9 g NaCl and 900 ml aquades. The number of protozoa was calculated by using a microscope at magnification 100 times. Measurement of rumen liquid protein **Commented [A12]:** I don't think that GC measurement of rumen VFA is according to GLP, please check again.

microbes using the method of Makkar et al. (1982) on the principle of gradual 167 168 centrifugation. The fatty acid profile of rumen liquid was analyzed using a gas chromatograph (Model GC-14A, Shimadzu Corporation, Kyoto, Japan). Samples were 169 stored at -20°C until analysis. Following the method of Cocks and Rede (1966), the fatty 170 acid composition was determined by converting oil to fatty acid methyl esters. This 171 involved adding 950 µL of n-hexane, 50 mg of oil, and 50 µL of sodium methoxide. The 172 peaks of the fatty acid methyl esters were identified by comparing their retention times 173 with those of authentic standards. The relative percentage of each fatty acid was 174 calculated based on its peak area relative to the total peak area of all fatty acids in the 175 sample. Fatty acids were categorized into short-chain fatty acids (SA), ranging from C4 176 to C15, and long-chain fatty acids (LA), which are greater than C16. 177 **Statistical Analysis** 178 179 The data were analyzed using a completely randomized design in SPSS 16. Duncan's Multiple Range Test with significance was set at $p \ge 0.05$ to compare 180 treatments when a significant effect was observed. 181 182 RESULTS 183 **Feed Fermentability** 184 185 The fermentability of feed is determined by various factors such as pH, total protozoa count, microbial protein content, NH3 concentration, and total VFA production 186 in rumen liquid. These parameters are detailed in Table 2. The pH levels across all 187 188 treatments fell within the normal range of 6.75-6.82. While the treatment did not significantly affect pH (p>0.05), notable differences (p<0.05) were observed in the total 189 protozoa count, microbial protein content, total VFA, and NH3 concentrations. Palm oil 190

Commented [A13]: Should be categorized into SCFA, MCFA and LCFA.

Commented [A14]: Data on protozoa should be converted first into log scale, and then analyzed by using ANOVA.

supplementation had the most pronounced impact, notably reducing protozoa count and
microbial protein. When zinc soap palm oil protection (T2) was partially supplemented,
it led to higher microbial protein and VFA production compared to feed supplemented
with total zinc palm oil soap, although the difference was not significant.

195

Feed Digestibility

Table 3 presents the feed digestibility results from the palm oil zinc soap 196 supplementation treatment. Statistical analysis revealed no significant differences in the 197 digestibility of dry matter (DMD), organic matter (OMD), and crude protein (CPD) due 198 to the palm oil zinc soap treatment. However, there were significant differences (P<0.05) 199 in the digestibility of ether extract (EED), crude fiber (CFD), neutral detergent fiber 200 (NDFD), and acid detergent fiber (ADFD). Both non-protected and protected palm oil 201 increased EED. Improvements in fiber digestibility (CFD, NDFD, and ADFD) were only 202 203 observed with zinc soap supplementation (T2 and T3), whereas non-protected palm oil showed no difference from the control. The highest fiber digestibility was achieved with 204 partial zinc soap supplementation (T2), though it was not significantly different from the 205 206 total protection zinc soap supplementation (T3).

207

Relative Proportion of VFA

Palm oil supplementation significantly influenced the partial VFA production of acetate, propionate, butyrate, the A/P ratio, and methane (P<0.05), but did not impact the efficiency of hexose energy conversion into VFA. The relative proportions of VFAs in this study were 59%–62% acetic acid, 24%–29% propionic acid, and 12%–13% butyric acid. According to Duncan's Mulitiple Range Test results, both partial (T2) and total (T3) ZSPO supplementation resulted in higher levels of acetate, propionate, and butyrate compared to PO supplementation (T1) and the control (T0). Conversely, PO and ZSPO

215	supplementation produced a lower A/P ratio. The estimated methane production also	
216	decreased with PO and ZSPO supplementation.	
217	Fatty Acids in Rumen Liquid	
218	Table 5 outlines the fatty acid composition in rumen liquid. The control diet	
219	primarily contained short-chain fatty acids (SA), with a notably higher concentration of	
220	C4 compared to other treatments (P<0.05). Supplementation with palm oil (PO and	
221	ZSPO) led to increased levels of palmitate (C16:0), stearate (C18:0), and oleate (C18:1)	
222	relative to the control (P<0.05). However, the proportion of stearate was significantly	
223	lower with ZSPO supplementation (P<0.05). Unsaturated fatty acids, particularly cis-9	
224	18:1, trans-11 18:1, linoleate (18:2), linolenic acid (18:3), and EPA (20:5), showed a	
225	significant increase in the 75% and 100% ZSPO treatments (P<0.01), while the increase	
226	in DHA was not statistically significant.	
227	These fatty acids are classified into various categories, including short-chain fatty	
228	acids (SCFAs), long-chain fatty acids (LCFAs), saturated fatty acids (SFAs), unsaturated	
229	fatty acids (UFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty	
230	acids (PUFAs). According to Table 5, the control diet exhibited a higher total content of	
231	SCFAs compared to the diets supplemented with PO and ZSPO (P<0.05), while it yielded	
232	a greater amount of LCFAs. SFAs showed no significant differences among all	
233	treatments, whereas ZSPO supplementation demonstrated an ability to elevate UFAs.	
234	Notably, the 100% ZSPO supplementation resulted in higher levels of both MUFAs and	
235	PUFAs compared to the other treatments.	
236		
237	DISCUSSION	
238	Feed Fermentability	

Commented [A15]: The discussion part has been nicely elaborated.

The pH is one of the crucial factors in assessing rumen health. The findings 239 indicated that adding palm oil and protected palm oil zinc soap did not disrupt the rumen 240 fermentation process. Similar results have been reported in other studies, such as those 241 conducted by Adeyemi et al. (2015), Amanullah et al. (2022), and Roy et al. (2017). The 242 reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil, 243 particularly lauric acid. According to Rahman et al., (2022), palm oil typically contains 244 about 44% lauric acid (C12:0). Lauric acid is known to have antiprotozoal properties, 245 which can potentially disrupt protozoan cell membranes and inhibit their growth (Santos 246 et al., 2022). 247

Ibrahim et al. (2021) discovered that supplementing with palm oil altered the 248 rumen microbial population in ruminants, potentially affecting their overall protein 249 synthesis capability. Sears et al. (2024) reported that oleic acid significantly reduces 250 251 Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting 252 in decreased protein synthesis. The use of zinc soap palm oil protection, both partially 253 254 (T2) and fully (T3), can mitigate the harmful effects of unsaturated fatty acids, enabling microbes to develop as effectively as in the control group. 255

Yanza et al. (2021) found that ruminants given protected medium chain fatty acids (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to increased propionate production. Propionate is formed from the breakdown of glycerol during fat hydrolysis. The NH3 concentration in the T2 treatment was the lowest among all treatments, while microbial protein production was the highest. This indicates that NH3 is utilized for microbial protein synthesis (Getabalew & Negash, 2020).

Feed Digestibility

263

The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were 264 unaffected by 5% non-protected palm oil zinc soap supplementation, indicating that this 265 level of supplementation is safe for rumen microbial growth. These results are consistent 266 with previous research, which found that 6% supplementation with vegetable oils (olive 267 oil, sunflower oil, and linseed oil) yielded OMD, NDFD, and ADFD values comparable 268 to the control, although linseed oil resulted in higher digestibility than sunflower oil 269 (Vargas-bello-p et al., 2020). The effect of oil supplementation on digestibility is highly 270 dependent on the nutrient composition of the feed and the fatty acid profile of the oil. The 271 experimental feed in this study, characterized by high fiber content and low ADF 272 (13.77%), supports the proliferation of cellulolytic microbes. A high-fiber diet may 273 mitigate the potential negative impact of oil on fiber digestion by rumen microbes 274 275 (Benchaar et al., 2015). Both non-protected (T1) and protected (T2 and T3) palm oil increased EED, supporting the conclusion that palm oil can be use d as an energy 276 supplement without compromising rumen feed fermentability. 277

278 A notable finding from this research is that both partial and total zinc soap supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and 279 ADFD. This effect is likely due to the fat and zinc content in palm oil. Palm oil contains 280 281 high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki et al., 2015). Recent findings by Sears et al. (2024) indicate an increase in Prevotella and Fibrobacter 282 283 populations in response to palmitic acid supplementation. This suggests that cellulolytic 284 bacteria can incorporate palmitic acid into their cell membranes, thereby increasing energy availability for metabolic processes. Furthermore, zinc is crucial for various 285 286 metabolic functions in rumen microbes.

Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing 287 288 enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain et al., 2016; Uniyal et al., 2017). It is indispensable for preserving the structural and 289 functional integrity of over 2000 transcription factors and 300 enzymes. It can be 290 contended that virtually all metabolic pathways are reliant, to varying degrees, on at least 291 one Zn-dependent protein (Ranasinghe et al., 2015). Recent research by Fellner et al. 292 (2021) elucidated that Zn supplementation precipitated increased acetate production and 293 a heightened acetate/prothionate ratio. This delineates an augmented fiber digestion 294 process facilitated by cellulolytic bacteria, consequent to heightened microbial protein 295 synthesis. This conclusion aligns with findings indicating elevated levels of microbial 296 protein compared to the control, specifically 13.37 (T2) and 11.41 (T3) versus 8.01 in the 297 control feed (Table 3). 298

299

Relative Proportion of VFA

The relative proportion of acetate observed is slightly lower than that reported by 300 Anzhany et al. (2024), which ranged from 69% to 72%, while the proportions of 301 propionate and butyrate are comparatively higher. According to Amanullah et al. (2022), 302 palm oil supplementation modifies the rumen environment, thereby altering the ratio of 303 cellulolytic to amylolytic microbes. Both partial and total ZSPO supplementation resulted 304 305 in significantly higher acetate production compared to non-protected palm oil (P<0.05). These findings are consistent with the increased microbial protein levels observed with 306 307 ZSPO supplementation, suggesting enhanced bacterial growth. Zinc (Zn) is an essential 308 trace mineral that functions as a cofactor for over 300 enzymes, and is involved in DNA synthesis, growth, CO2 transport, essential fatty acid metabolism, and protein and nucleic 309 310 acid synthesis (Elamin et al., 2013).

The increase in propionate in the ZSPO supplementation treatment resulted from 311 312 the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated 313 fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids 314 from rumen bio-hydrogenation and increasing the duodenal flows of mono and 315 polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with 316 studies showing that ZSPO supplementation leads to an increase in protozoan populations 317 (Table 4). Zinc supplementation has been associated with shifts in rumen volatile fatty 318 acid profiles, notably an increase in propionate and a reduction in the acetate-to-319 propionate ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane 320 production and a lower A/P ratio are advantageous, as higher propionate levels provide a 321 322 carbon framework and synthetic energy for livestock.

323

Fatty Acids in Rumen Liquid

The introduction of oil supplementation led to a reduction in the proportion of 324 short-chain fatty acids within rumen liquid, while concurrently increasing the presence of 325 326 long-chain fatty acids. This transition is attributed to the predominant presence of linoleic acid (LA) in palm oil, constituting 98.3% of its composition, with the remaining 1.7% 327 comprising short-chain fatty acids. Among the long-chain fatty acids, comprising 98.3% 328 329 of the total, nearly half (49.9%) are unsaturated fatty acids (UFAs), comprising 39.2% monounsaturated fatty acids (MUFAs) and 10.5% polyunsaturated fatty acids (PUFAs) 330 (Mancini et al., 2015). The prevalence of saturated fatty acids (SFAs) in palm oil 331 332 contributed to a consistent range of ruminal saturated fatty acid levels, varying insignificantly between 70.90% and 79.05% (Table 6). 333

334	Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities,
335	namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and
336	glycerol. Unsaturated fatty acids including oleic acid (18:1) undergo a biohydrogenation
337	process, namely being converted into saturated fatty acids stearic acid (18:0) in the rumen
338	by bacteria (Buccioni et al., 2012). Mosley et al. (2002) who tracked the biohydrogenation
339	process of oleic acid found that oleate in the rumen can change into trans and cis forms
340	because rumen microbes produce cis/trans isomesase enzymes, and there is an isomerase
341	that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate) to trans 18:1. The
342	dominant biohydrogenation process that occurs in the rumen is bacteria hydrogenate
343	polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 fatty acids, then
344	trans 18:1 fatty acids into stearic acid. Both trans-11 18:1 and cis-9, trans-11 CLA found
345	in milk fat have been shown to have health effects (Lock et al., 2006).
346	Consistent with our study's findings, Mosley et al. (2002) observed that

supplementation with ZSPO (T2 and T3) resulted in elevated levels of trans18:1 and cis 347 348 18:1, alongside reduced stearate (18:0) concentrations compared to non-protected oil supplementation (T1). Amanullah et al. (2022) conducted a comparative analysis 349 350 involving corn oil, linseed oil, and Ca salt (protected C18:2n-6), revealing that protected fatty acids (Ca Salt) led to diminished stearate levels but higher proportions of MUFA 351 352 and PUFA. These findings are consistent with the research by Satir et al. (2023), which demonstrated that 3% protected palm oil supplementation can increase the content of 353 palmitic acid (SFA) and oleic acid (MUFA).Stearate is the final product of the 354 biohydrogenation of oleic, linoleic, and linolenic acids. This indicates a complete 355 inhibition of the biohydrogenation process in the ZSPO treatment. The protection of 356 polyunsaturated fatty acids through saponification involves bonding the carboxyl group 357

358	with zinc, resulting in the inhibition of isomerization, which is a prerequisite for the
359	hydrogenation of unsaturated fatty acids into saturated fatty acids. This is reflected in the
360	higher proportion of MUFA in the ZSPO treatment compared to PO and the control
361	(Table 6). The substantial presence of PUFA, notably EPA and DHA, underscores Zinc's
362	role in the elongation and desaturation process, facilitated by the formation of arachidonic
363	acid (20:4) through delta-6-desaturase (D6D) and delta-5-desaturase (D5D) enzymes
364	(Ridgway, 2016). Zinc's indispensability is further highlighted as a pivotal mineral
365	cofactor for D6D and D5D enzymes (Noland & Drisko, 2020).
366	Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen,
367	particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic
368	acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock
369	products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZSPO
370	supplementation holds potential for enhancing the quality of meat and milk fat.
371	
372	CONCLUSION
373	Based on the results of this research, it can be concluded that zinc soap from palm
374	oil (ZPOS) can be developed as a source of energy and organic Zn. Its supplementation
375	in feed as much as 5% has beneficial effects, namely increasing fermentability,
376	digestibility, MUFA and EPA in the rumen. It was indicated that partial administration of
377	ZPOS (75%) resulted in higher protozoa populations and fiber digestibility. Further
378	investigation is required to test the ZPOS So it can be considered in trials on dairy
379	livestock<u>cows</u> in vivo .
380	

382	
383	CONFLICT OF INTEREST
384	The authors declare that there is no conflict of interest with any financial, personal,
385	or other relationships with other people or organization related to the material discussed
386	in the manuscript.
387	
388	ACKNOWLEDGEMENT
389	The research was funded by Faculty of Animal and Agricultural Science,
390	Diponegoro University.
391	
392	REFERENCES
393	Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A.
394	Karsani, & A. Q. Sazili. 2015. Influence of Carotino Oil on in Vitro Rumen
395	Fermentation, Metabolism and Apparent Biohydrogenation of Fatty Acids. Animal
396	Science Journal. 86(3):270-78. https://doi.org/10.1111/asj.12279.
397	Amanullah, S. M., Seong-shin Lee, D. Hand, Vi. Paradhipta, Young-hoo Joo, Dong-
398	hyeon Kim, Pil-nam Seong, Seung-min Jeong, & Sam-churl Kim. 2022. Impact
399	of Oil Sources on In Vitro Fermentation , Microbes , Greenhouse Gas , and Fatty
400	Acid Profile in the Rumen. Fermentation. 8(5):242.
401	https://doi.org/10.3390/fermentation8050242.
402	Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid Biohydrogenation,
403	Fermentation, and Digestibility of Ration Containing Napier and King Grass with
404	Different Harvest Ages and Altitudes: In Vitro Study. Tropical Animal Science
405	Journal. 47(1):68–78. https://doi.org/10.5398/tasj.2024.47.1.68.

406	AOAC. 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical
407	Chemists: Washington, DC.
408	Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil
409	Supplementation to Dairy Cows Fed Diets Based on Red Clover Silage or Corn
410	Silage: Effects on Methane Production, Rumen Fermentation, Nutrient Digestibility,
411	N Balance, and Milk Production. Journal of Dairy Science. 98(11):7993-8008.
412	https://doi.org/10.3168/jds.2015-9398.
413	Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid
414	Metabolism in the Rumen: New Insights on Lipolysis and Biohydrogenation with
415	an Emphasis on the Role of Endogenous Plant Factors. Animal Feed Science and
416	Technology. 174:1-25. https://doi.org/10.1016/j.anifeedsci.2012.02.009.
417	Cabatit, B. C. 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press: Manila.
418	Chaney, A. L., & E. P. Marbach. 1962. Modified Reagents for Determination of Urea
419	and Ammonia. Clinical Chemistry. 8(2):130–32.
420	https://doi.org/10.1093/clinchem/8.2.130.
421	Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of Zinc-Bearing
422	Palygorskite on Rumen Fermentation in Vitro. Asian-Australasian Journal of
423	Animal Sciences. 32(1):63-71. https://doi.org/10.5713/ajas.17.0920.
424	Cocks, L. V., & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis.

425 Academic Press: London.

426 Duffy, R., M. Yin, & L. E. Redding. 2023. A Review of the Impact of Dietary Zinc on

- 427 Livestock Health. Journal of Trace Elements and Minerals. 5(June):100085.
 428 https://doi.org/10.1016/j.jtemin.2023.100085.
- 429 Elamin, K. M., N. A. Dafalla, K. A. Abdel Atti, & A. A. Tameem Eldar. 2013. Effects

430	of Zinc Supplementation on Growth Performance and Some Blood Parameters of
431	Goat Kids in Sudan. International Journal of Pure and Applied Biological Research
432	and Sciences, 1(1):1–8.
433	Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The Effect of Total or Partial
434	Protected Vegetable Oil Supplementation on In Vitro Digestibility, Feed
435	Fermentability and Energy Efficiency. Buletin Peternakan. 43(3):171–78.
436	https://doi.org/10.21059/buletinpeternak.v43i3.43231.
437	Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of Supplemental
438	Zinc on Ruminal Fermentation in Continuous Cultures. Applied Animal Science.
439	37(1):27–32. https://doi.org/10.15232/aas.2020-02104.
440	Gao, Jian, Meng-zhi Wang, Yu-jia Jing, Xue-zhao Sun, Tian-yi Wu, & Liang-feng
441	Shi. 2016. Impacts of the Unsaturation Degree of Long-Chain Fatty Acids on the
442	Volatile Fatty Acid Profiles of Rumen Microbial Fermentation in Goats in Vitro.
443	Journal of Integrative Agriculture. 15(12):2827-33. https://doi.org/10.1016/S2095-
444	3119(16)61418-1.
445	General Laboratory Procedures. 1966. Departement of Dairy Science. University of
446	Wisconsin: Madison.
447	Getabalew, Mebrate, & Ayele Negash. 2020. Nitrogen Metabolism and Recycling in
448	Ruminant Animals : A Review College of Agricultural and Natural Resources
449	Science ,. Academic Journal of Nutrition. 9(3):29–38.
450	https://doi.org/10.5829/idosi.ajn.2020.29.38.
451	Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The Role of Zinc, Manganse
452	and Copper in Rumen Metabolism and Immune Function: A Review Article. Open
453	Journal of Animal Sciences. 6:304–24. https://doi.org/10.4236/ojas.2016.64035.

454	Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, Su Chui Len Candyrine,
455	W. N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of
456	Vegetable Oil Supplementation on Rumen Fermentation and Microbial Population
457	in Ruminant: A Review. Tropical Animal Health and Production. 53(4):1-11.
458	https://doi.org/10.1007/s11250-021-02863-4.
459	Khaskheli, A. A., & L. Chou. 2020. Evaluation of Fatty Acids Composition,
460	Metabolizable Energy, Nutrients Digestibility of Crude Palm Oil Fat Crystals in
461	Turkeys. Animal Feed Science and Technology. 270(October):114734.
462	https://doi.org/10.1016/j.anifeedsci.2020.114734.
463	Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of
464	Sunflower Oil Supplementation as Unsaturated Fatty Acid Source on Rumen
465	Fermentability and Performance of Lactating Garut Ewes. Journal of the Indonesian
466	Tropical Animal Agriculture. 42(3):185–93.
467	https://doi.org/10.14710/jitaa.42.3.185-193.
468	Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-Chemical Properties, Fatty
469	Acid Profile and Nutrition in Palm Oil. Journal of Paramedical Sciences (JPS).
470	6(3):117–34.
471	Lock, A. L., K. J. Harvatine, J. K. Drackley, & D. E. Bauman. 2006. Concepts in Fat
472	and Fatty Acid Digestion in Ruminants. Proc Intermountain Nutr Conf.
473	(January):85–100.
474	Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple
475	Determination of Microbial Protein in Rumen Liquor. J. Dairy Sci. 65(11):2170–73.

- 476 https://doi.org/10.3168/jds.S0022-0302(82)82477-6.
- 477 Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono.

478	2015. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects						
479	on Health. Molecules. 20:17339-61. https://doi.org/10.3390/molecules200917339.						
480	Martínez, Andres, & D. C. Church. 1970. Effect of Various Mineral Rumen Cellulose						
481	Elements. Journal of Animal Science. 31(5):982–90.						
482	https://doi.org/10.2527/jas1970.315982x.						
483	Mosley, E. E., G. L. Powell, M. B. Riley, & T. C. Jenkins. 2002. Biohidrogenasi						
484	Mikroba Asam Oleat Menjadi Trans Isomer Secara in Vitro. Jurnal Penelitian Lipid.						
485	43:290–96.						
486	Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of Different Vegetable Oils						
487	on In Vitro Ruminal Fermentability and Nutrient Digestibility in Ettawah Crossbred						
488	Goat.AnimalProduction.21(1):22-29.						
489	https://doi.org/10.20884/1.jap.2019.21.1.689.						
490	Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan.						
491	2015. The Role of Ciliate Protozoa in the Rumen. Frontiers in Microbiology. 6:1-						
492	14. https://doi.org/10.3389/fmicb.2015.01313.						
493	Noland, D., & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition						
494	Therapy. L. Wagner (Eds). Humana Press: Switzerland.						
495	Ogimoto, Keiji, & Soichi Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific						
496	Societies Press.						
497	Orskov, E. R., & M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied						
498	Science: London (UK).						
499	Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui						
500	J. B. Bessa, & L. Lopes-da-costa. 2022. Effects of Feeding Rumen-Protected						
501	Linseed Fat to Postpartum Dairy Cows on Plasma n-3 Polyunsaturated Fatty Acid						

502	Concentrations and Metabolic and Reproductive Parameters. J. Dairy Sci. 105:361-
503	74. https://doi.org/10.3168/jds.2021-20674.
504	Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The Composition of Fatty
505	Acids in Several Vegetable Oils from Indonesia. Biodiversitas. 23(4):2167-76.
506	https://doi.org/10.13057/biodiv/d230452.
507	Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P.
508	Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of Zinc
509	Supplementation on Serum Lipids: A Systematic Review and Meta-Analysis.
510	Nutrition and Metabolism. 12(1). https://doi.org/10.1186/s12986-015-0023-4.
511	Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. R.S. McLeod
512	(Eds). Elsevier: Netherland.
513	Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of Different Vegetable Oils on
514	Rumen Fermentation and Conjugated Linoleic Acid Concentration in Vitro.
515	Veterinary World. 10(1):11-16. https://doi.org/10.14202/vetworld.2017.11-16.
516	Santos, Francisco A., Gabriela S. Cruz, Filipe A. Vieira, Bruno R. S. Queiroz,
517	Cleverson D. T. Freitas, Felipe P. Mesquita, & Pedro F. N. Souza. 2022.
518	Systematic Review of Antiprotozoal Potential of Antimicrobial Peptides. Acta
519	Tropica. 236:106675. https://doi.org/10.1016/j.actatropica.2022.106675.
520	Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of Adding Rumen - Protected
521	Palm Oil in Diet on Milk Fatty Acid Profile and Lipid Health Indices in Kivircik
522	Ewes. Tropical Animal Health and Production. 55:159.
523	https://doi.org/10.1007/s11250-023-03580-w.
524	Sears, A., F. Hentz, J. de Souza, B. Wenner, Robert E. Ward, & F. Batistel. 2024.
525	Supply of Palmitic, Stearic, and Oleic Acid Changes Rumen Fiber Digestibility and

526	Microbial Composition. J. Dairy Sci. 107(2):902–16.
527	https://doi.org/10.3168/jds.2023-23568.
528	Shingfield, K. J., & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in
529	Ruminants and Humans. Pp. 1-65 in Conjugated Linoleic Acids and Conjugated
530	Vegetable Oils, In edited by B. Sels and A. Philippaerts (Eds). The Royal Society of
531	Chemistry.
532	Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in
533	the Animal Organism: A Review. Scientia Agriculturae Bohemica. 48(1):13-21.
534	https://doi.org/10.1515/sab-2017-0003.
535	Swain, Partha S., Somu B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016.
536	Nano Zinc, an Alternative to Conventional Zinc as Animal Feed Supplement: A
537	Review.AnimalNutrition.2(3):134-41.
538	https://doi.org/10.1016/j.aninu.2016.06.003.
539	Tilley, J. M. A., & R. A. Terry. 1963. A Two-Stage Technique for the in Vitro Digestion
540	of Forage Crops. Grass and Forage Science. 18(2):104-11.
541	https://doi.org/10.1111/j.1365-2494.1963.tb00335.x.
542	Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P.
543	Faverdin. 2023. Genetic Relationships between Weight Loss in Early Lactation and
544	Daily Milk Production throughout Lactation in Holstein Cows. J. Dairy Sci.
545	106:4799-4812. https://doi.org/10.3168/jds.2022-22813.
546	Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017.
547	Comparative Efficacy of Zinc Supplementation from Different Sources on Nutrient
548	Digestibility, Hemato-Biochemistry and Anti-Oxidant Activity in Guinea Pigs.
549	Livestock Science, 204:59–64, https://doi.org/10.1016/i.livsci.2017.08.009.

550	Vargas-bello-p, Einar, Lizbeth Esmeralda Robles-jimenez, Rafael Ayala-hern, Jose
551	Romero-bernal, Nazario Pescador-salas, & Octavio Alonso. 2020. Effects of
552	Calcium Soaps from Palm, Canola and Safflower Oils on Dry Matter Intake,
553	Nutrient Digestibility, Milk Production, and Milk Composition in Dairy Goats.
554	Animals. 10(1728). https://doi.org/10.3390/ani10101728.
555	Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L.
556	Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of Zinc Sulfate and Coated Zinc
557	Sulfate on Lactation Performance, Nutrient Digestion and Rumen Fermentation in
558	Holstein Dairy Cows. Livestock Science. 251(July 2020).
559	https://doi.org/10.1016/j.livsci.2021.104673.
560	Wardeh, Muhammad Fadel. 1981. "Models for Estimating Energy and Protein
561	Utilization for Feeds: All Graduate Theses and Dissertations." Utah State University.
562	World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group - The
563	World Bank: Washington- USA.
564	Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, Min Gao, H.
565	Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The Effects of Dietary
566	Medium-Chain Fatty Acids on Ruminal Methanogenesis and Fermentation in Vitro
567	and in Vivo: A Meta-Analysis. Journal of Animal Physiology and Animal Nutrition.
568	105(5):874-89. https://doi.org/10.1111/jpn.13367.
569	
570	

572	Table 1. Ingredients and chemical composition of ex-	xperimental diet (dry matter basis).
	Item	Composition
	Ingredient :	
	Corn straw	33.38
	Soybean hull	12.25
	Rice bran	7.42
	Pollard	9.32
	Cassava waste meal	9,93
	Coconut meal	17.01
	Soybean meal	6.98
	Molases	3.00
	Vitamin and mineral mixture	0.80
	Nutrient composition :	
	Dry matter (DM), %	84.68
	Ash, %DM	8.63
	Crude protein, %DM	14.32
	Ether extract, %DM	4.43
	Crude fiber, %DM	20.02
	Cal <u>c</u> sium, %DM	0.33
	Phospor, %DM	0.28
	Zinc, mg/kg DM	16,93
	Neutral detergent fiber, %DM	35.51
	Acid detergent fiber, %DM	14.77
	Total digestible nutrient (TDN) ¹ , %	63.15
573	¹ Total digestible nutrients (TDN) were calculate	ed using TDN (%DM) = TDN =
574	-17.2649 + 1.2120(PK) + 0.8352(BETN) + 2.465	37(LK) + 0.4475(SK), according

to (Wardeh, 1981).

Table 2. The pH, total protozoa, microbial protein, NH3, and total VFA production of rumen liquid due to supplementation of the zinc soap palm oil (ZPOS)

_		Treatment				
Parameter	T0	T1	T2	T3		
pН	6,76	6,75	6,73	6,82		
Protozoa (10 ³ cel <mark>l</mark> /ml)	98,14 ^a	32,57 ^c	82,83 ^{ab}	69,31 ^b		
Microbial protein (mg/ml)	13,01 ^a	9,37 ^b	13,37 ^a	11,41 ^{ab}		
NH ₃ (mM)	14,06 ^a	14,45 ^a	9,64 ^b	10,36 ^b		
VFA (mM)	87,52 ^b	101,78 ^b	164,38 ^a	157,89 ^a		

Commented [A16]: Please provide SEM and P-values for all parameters.

Formatted: Subscript

^{a,b} different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal diet+partially ZPOS(75% ZPOS+25%PO); T3= basal diet+5% ZPOS

Table 3. Feed nutrient in vitro digestibility due to supplementation of the zinc soap palm
 oil (ZPOS).

Commented	[A17]: Please provide SEM and P-values for al	
narameters		

Parameter	Treatment				
	T0	T1	T2	T3	
Digestibility :					
Dry matter (%)	64.06	63.82	67.20	69.24	
Organic matter (%)	69.16	65.89	69.65	69.98	
Crude protein (%)	68.69	67.99	66.39	65.11	
Ether extract (%)	88.45 ^b	94.34 ^a	93.22 ^a	92.35 ^a	
Crude fiber (%)	54.46 ^b	51.46 ^b	73.63 ^a	66.11 ^{ab}	
Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03 ^a	64.62 ^{ab}	
Acid detergent fiber (%)	45,12 ^b	44.56 ^b	65.81 ^a	53.76 ^{ab}	

^{a,b} different superscripts at the same column indicate significant differences (P < 0.05).

591 T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal

592 diet+partially ZPOS (75% POZS+25%PO); T3= basal diet+5% ZPOS

Table 4. Fermentability of feed due to palm oil supplementation in vitro

Demonster		Treatm	nent		
Parameter	TO	T1	T2	T3	
Acetate (mM)	41,17 ^b	51,10 ^b	59,31ª	65,80 ^a	
Propionate (mM)	15,91°	25,41 ^{bc}	28,73 ^a	29,89 ^a	
Butyrate (mM)	8,73 ^b	10,28 ^b	12,55 ^a	14,20 ^a	
A/P	2,59 ^a	2,01 ^b	2,06 ^b	2,20 ^b	
Methan <u>e</u> (mM)	31,87 ^a	28,04 ^b	28,58 ^b	29,57 ^{ab}	
Efficiency of energy conversion (%)	73,05	73,19	74,74	74,47	

a,b different superscripts at the same column indicate significant differences (P<0.05).

597 T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal

598 diet+partially ZPOS (75% POZS+25%PO); T3= basal diet+5% ZPOS

Commented [A18]: Please provide SEM and P-values for all

parameters.

614

Table 5. Proportion of fatty Acids in rumen liquid due supplemented of zinc soap palm
 Oil (ZPOS) In Vitro

Fotty Asida	Treatment			
Fatty Acids —	T0	T1	T2	T3
		% fa	ıt	
Short chain Fatty Acids (SA)				
C4	7,34 ^b	5,34 ^a	5,27 ^a	2,36 °
C6	<0,1	<0,1	<0,1	<0,1
C8, kaprilat	<0,1	<0,1	<0,1	<0,1
C10, kaprat	<0,1	<0,1	<0,1	<0,1
C12, laurat	1,38	1,15	1,22	1,2
C13	0,3	0,17	<0,1	<0,1
C14, miristat	2,19	1,85	2,3	2,08
C14:1	1,00	0,5	0,57	0,64
C15,	0,51	0,75	0,36	0,43
C15:1	0,34	0,23	0,16	0,21
Long chain Fatty Acids (LA)				
C16, palmitat	22,03 ^b	29,34 ^a	29,23 ^a	31,14 ^a
C16:1, n7	1,02 ^b	1,04 ^b	1,36 ^{ab}	1,5 ^a
C17	0,39	0,23	0,23	0,28
C17:1	<0,1	<0,1	<0,1	<0,1
C18, stearate	20,13 ^b	30,74 ^a	23,17 ^a	21,5 ^a
trans 11 C18:1	12,55 °	17,84 ^b	26,16 ^a	28,05 ª
cis 9 C18:1, oleat	1,09 ^b	1,43 ^{ab}	1,99 ^a	1,83 ^a
C18:2	1,04 °	1,31 bc	1,6 ^{ab}	1,86 ^a
C18:3	<0,1	<0,1	<0,1	<0,1
C18:3, omega 6	0,22 ^b	0,26 ^b	0,45 ^a	0,53 ^a
C18:3,gamma linolenat	0,79	<0,1	0,38	0,41
C20	1,01	0,83	0,64	0,77
cis 11 C20:1	0,16	0,59	0,21	0,23
cis 11-14 C20:2	<0,1	<0,1	<0,1	<0,1
C20:3	<0,1	<0,1	<0,1	<0,1
C20:4, arakidonat	0,48 ^a	<0,1 ^b	<0,1 ^b	<0,1 ^b
C20:5, EPA	0,07 °	0,55 ^b	0,59 ^b	0,76 ^{ab}
C21	0,38	0,31	0,2	0,26
C22, behenate	0,4	0,23	0,23	0,25
C22:1	<0,1	<0,1	<0,1	<0,1
C22:6, DHA	3,19	4,81	4,57	4,52
C24	<0,1	<0,1	<0,1	<0,1
C24:1, nervonat omega 9	<0,1	<0,1	<0,1	<0,1

Commented [A19]: Please provide SEM and P-values for all parameters.

Commented [A20]: Please categorize the fatty acids into three: 1. Short chain FA (SCFA) 2. Medium chain FA (MCFA) 3. Long chain FA (LCFA)

 a,b different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal
diet+partially ZPOS (75% POZS+25%PO); T3= basal diet+5% ZPOS

620

621

622

623

624

Table 6. Proportion of short chain, long chain, saturated and unsaturated fatty acids i	n
rumen liquid due with supplemented of zinc soap palm Oil (ZPOS) In Vitro	

Fatty Acids		Treatm	ent	
	TO	T1	T2	T3
		% fa	t	
Amount of fatty acids :				
SA	13,06 ^a	9,99 ^b	9,88 ^b	6,92 °
LA	64,95	89,51ª	81,01ª	83,09 ^a
SFA	79,05	71,94	72,53	70,9
UFA	20,95 ^b	28,06 ^a	27,47 ^a	29,1 ^a
MUFA	15,16 ^b	17,13 ^{ab}	19,88 ^a	21,82 ^a
PUFA	5,79°	6,93 ^{bc}	7,59 ^{ab}	8,08 ^a

Commented [A21]: Please provide SEM and P-values for all parameters.

Commented [A22]: SCFA	
Commented [A23]: LCFA	

 a_{b} different superscripts at the same column indicate significant differences (P<0.05).

626 SA= short chain fatty acids, LA= long chain fatty acids, SFA= saturated fatty acids,

627 UFA= unsaturated fatty acids (UFA), MUFA= monounsaturated fatty acids, dan PUFA=

628 polyunsaturated fatty acids.

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal

630 diet+partially ZPOS (75% POZS+25%PO); T3= basal diet+5% ZPOS

631

[TASJ] New notification from Tropical Animal Science Journal

Anis Muktiani <anis.muktiani@gmail.com>

Tue, Jul 9, 2024 at 3:51 PM

To: "Prof. Dr. Ir. Komang G. Wiryawan" <kgwiryawan@yahoo.com>

I hereby send a revised manuscript entitled : "Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability, Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid". Thank you for reminding me. [Quoted text hidden]

3 attachments

- OUTPUT TABEL 2 SPSS (File 3).spv 165K
- C-Form C1_TASJ-56357- Already did (File 2).doc W 1123K
- C-Manuscript TASJ-56357-revised July 9 (File 1).docx W 117K

Tropical Animal Science

Faculty of Animal Science Building, IPB University Jln. Agatis, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: https://journal.ipb.ac.id/index.php/tasj

PAPER EVALUATION

Paper Title: Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability, Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid

Comments (please use additional paper if more space is needed)

No	Comments	Author's response
Α	Editor	
1	Introduction Please state the novelty clearly. The introduction should contain problems, previous research, novelty statements, and objectives.	 The problem : Early lactation dairy cows experience negative energy balance due to decreased dry matter intake (DMI). Zinc deficiency is caused by increased zinc requirements at the beginning of lactation and low zinc content in feed ingredients. Previous research : Suplementation palm oil. Suplementation Zinc soap (in vitro), however there has been no research that explores the contribution of long chain fatty acids, MUFA and PUFA due to zinc soap supplementation as a precursor for the synthesis of long fatty acids and unsaturated fatty acids in milk. Novelty : The use of Zn as an oil protector has a double benefit, namely protecting unsaturated fatty acids from the biohydrogenation process of rumen microbes while providing Zn needed for rumen microbes and livestock. The results of this study provide information regarding the concentration of long chain fatty acids to increase production and health of dairy livestock. Objectives : This study aimed to evaluate the effects of energy and organic zinc supplementability, digestibility, and unsaturated fatty acid profiles in vitro.

Tropical Animal Science

No	Comments	Author's response
2	References	
	a) Please check the writing of	a) Already did
	references from journals and	
	books, also how to cite	
	references in the text.	
	b) Please ensure that every	b) Already did, we used Mandeley.
	reference cited in the text is	
	also present in the reference	
	list (and vice versa).	
	c) Please ensure that the number	c) Amount of references 54 references
	of journal publications	Journal : 43 journal
	published in the last 10 years	journal published 2014-2024 : 35 journal (81%)
	is more than 80%.	
3	Tables 2-6: please provide the	a) Already did in Table 2, Table 3, Table 4, Table 5,
	SEM data for all variables.	and Table 6
В	Reviewer I (MB1)	
1	Title: Correct the title clearly	Supplementation of Zinc Soap Palm Oil Improves
1	The concet the the clearly	Feed Fermentability and Unsaturated Fatty Acid
		Profile in Rumen Liquid
2	Line 111-112, a dietary trial:	The nutrient content of basal feed is listed in Table 1
	Specify clearly the nutrient	(line 598)
	content of the diet	
3	Conclusion: Make it more	Already did
	compact, and do not repeat the	
	statement of experimental result.	
С	Reviewer II (MB2)	
1	Please find the comments in the	
	text.	
	- Abstract	
	a) Line 12 :	a) The study used a completely randomized design
	- How many replicates?	with 4 treatments and 5 replications.
	- From how many goats?	The inoculum source was rumen liquid from three figure for the figure and ware
		fistulated female dairy goats, and were
	b) Line 18 :	homogenized.b) ZPOS supplementation resulted higher acetate and
	- Compared to what?	b) ZPOS supplementation resulted higher acetate and propionate levels compared to the control and
	c) Line 19 : - P-value?	c) supplementation 5% palm oil (P<0.05)
	c_{j} Line 1_{j} . $= 1$ -value:	\circ supportionation 570 partition (1 < 0.05)

Tropical Animal Science

Line 21 : - Please describe. Line 23 : - Please describe. roduction Line 27 - 32 : - Is it similar between tropical and temperate regions? Please address such difference. Line 37 – 38 : - The highest proportion is palmitic acid, which is SFA. Please also address here the palmitic acid in palm oil including its roles or effect in the rumen.	e) a)	eicosapentaenoic acid (EPA), and docosahexaenoid acid (DHA) monounsaturated fatty acid (MUFA) Already did (line 34-43) High levels of palmitic acid are very beneficial for cellulolytic bacteria. Cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby increasing energy availability
roduction Line 27 - 32 : - Is it similar between tropical and temperate regions? Please address such difference. Line 37 – 38 : - The highest proportion is palmitic acid, which is SFA. Please also address here the palmitic acid in palm oil including its roles or effect	a)	 monounsaturated fatty acid (MUFA) Already did (line 34-43) High levels of palmitic acid are very beneficial for cellulolytic bacteria. Cellulolytic bacteria can incorporate palmitic acid into their cell
roduction Line 27 - 32 : - Is it similar between tropical and temperate regions? Please address such difference. Line 37 – 38 : - The highest proportion is palmitic acid, which is SFA. Please also address here the palmitic acid in palm oil including its roles or effect	a)	Already did (line 34-43) High levels of palmitic acid are very beneficial for cellulolytic bacteria. Cellulolytic bacteria can incorporate palmitic acid into their cell
Line $27 - 32$: - Is it similar between tropical and temperate regions? Please address such difference. Line $37 - 38$: - The highest proportion is palmitic acid, which is SFA. Please also address here the palmitic acid in palm oil including its roles or effect	,	High levels of palmitic acid are very beneficial for cellulolytic bacteria. Cellulolytic bacteria can incorporate palmitic acid into their cell
between tropical and temperate regions? Please address such difference. Line 37 – 38 : - The highest proportion is palmitic acid, which is SFA. Please also address here the palmitic acid in palm oil including its roles or effect	,	High levels of palmitic acid are very beneficial for cellulolytic bacteria. Cellulolytic bacteria can incorporate palmitic acid into their cell
temperate regions? Please address such difference. Line $37 - 38$: - The highest proportion is palmitic acid, which is SFA. Please also address here the palmitic acid in palm oil including its roles or effect	b)	cellulolytic bacteria. Cellulolytic bacteria can incorporate palmitic acid into their cell
Line 77 – 84 : - Were there any other studies that use Zn soap in the rumen? Please describe here. Please also explain the novelty of the study in comparison to those relevant studies.	c) -	for metabolic processes. Recent findings by Sears et al. (2024) showed an increase in <i>Prevotella</i> and <i>Fibrobacter</i> populations in response to palmitic acid supplementation. Already did (line 91-103). Novelty : The use of Zn as an oil protector has a double benefit, namely protecting unsaturated fatty acids from the biohydrogenation process of rumen microbes while providing Zn needed for rumen microbes and livestock. The results of this study provide information regarding the concentration of long chain fatty acids, MUFA and PUFA in the rumen due to zind soap supplementation, which is expected to be used as a consideration in providing unsaturated
aterial and Methods Line 98 – 99 : - Is there any proof that the saponification profess is really working to produce ZPOS?	a)	fatty acids to increase production and health of dairy livestock. The saponification reaction that occurs between palm oil (triglyceride,TG), KOH and ZnCl2 is as follows:
	Line $98 - 99$: - Is there any proof that the saponification	Line 98 – 99 : - Is there any a) proof that the saponification profess is really working to

Journal

No	Comments	Author's response
		0
		$\begin{array}{cc} 2 \text{ TG} + 6 \text{ KOH} \\ 0 \end{array} \xrightarrow{} 2 \text{ Gly} + 6 \text{ R-C-OK} \end{array}$
		$6 \text{ R-C-OK} + 3\text{ZnCl2} \rightarrow 3 (\text{R-COO})_2\text{Zn} + 6 \text{ KCl}$
		2 TG+6 KOH+3 ZnCl ₂ → 2Gly+3 (R-COO) ₂ Zn+KCl
		A soap precipitate (R-COO) ₂ Zn is formed.
		- The formation of ZPOS can also be seen from the type of rumen fatty acid (Table 5), oleic acid on ZPOS supplementation was higher than PO supplementation, indicating that the fatty acid did not undergo biohydrgenation.
	 b) Line 118 – 119 : - Please pidaraphrase the sentence into passive voice. 	 b) Already did. (line 143-144) In the fermenter tube, 0.55 grams of feed samples from each treatment were added, followed by 40 ml of McDaugall's solution and 10 ml of rumen liquid.
	 c) Line 146 – 148 : - I don't think that GC measurement of rumen VFA is according to GLP, please check again. 	c) Already did. (line 172-177) Gas chromatography, as reported by Cottyn and Boucque (1968) was used to quantify the generation of partial VFAs
	 d) Line 176 – 177 : - Should be categorized into SCFA, MCFA, and LCFA. 	d) Fatty acids were categorized into short-chain fatty acids (SCFA) as having fewer than six carbon atoms, medium chain fatty acids (MCFA) ranging from C6 to C12, and long-chain fatty acids (LCFA), which are greater than C12 (Wang et al., 2020).
	 Result Line 186 : - Data on protozoa should be converted first into log 	a) Already did (file 3)

Tropical Animal Science

No	Comments	Author's response
	scale, and then analyzed by	
	using ANOVA.	
	- Table	
	a) Table 2 : - Please provide SEM and P-values for all parameters.	a) Already did
	b) Table 3 : - Please provide SEM and P-values for all parameters.	b) Already did
	c) Table 4 : - Please provide SEM and P-values for all parameters.	c) Already did
	d) Table 5 :	d) Already did
	- Please provide SEM and P-	
	values for all parameters.	- Already did :
	 Please categorize the fatty acids into three: 	1. SCFA : C<6
	1. Short chain FA (SCFA)	2. MCFA : C6-C12
	2. Medium chain FA (MCFA)	3. LCFA : C>12
	3. Long chain FA (LCFA)	a) Almaader did
	e) Table 6 : - Please provide SEM and P-values for all	e) Already did
	parameters.	
	- SCFA - LCFA	

2

1

3

4

ABSTRACT

Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability and

Unsaturated Fatty Acid Profile in Rumen Liquid

5 This study aimed to evaluate the effects of energy and organic zinc supplement, specifically zinc palm oil soap (ZPOS), on fermentability, and unsaturated fatty acid 6 profiles in vitro. The study used a completely randomized design with 4 treatments and 5 7 8 replications. The treatments were: T0 (basal diet without supplementation), T1 (basal diet 9 + 5% palm oil, PO), T2 (basal diet + 5% partially ZPOS: 3.75% ZPOS + 1.25% PO), and T3 (basal diet + 5% ZPOS). The inoculum source was rumen liquid from three fistulated 10 11 female dairy goats, and were homogenized. The goats were feed on consisted of corn straw, soybean hulls, and concentrate (TDN 63%, CP 14%, NDF 35%). Results showed 12 that both partial and full ZPOS supplementation (T2 and T3) resulted in higher VFA and 13 microbial protein production, and lower NH3 levels compared to the control (P<0.05). 14 15 Partial ZPOS supplementation (T2) resulted DM, OM, and CP digestibility were similar 16 among the treatments, but digestibility of EE, CF, NDF, and ADF was significantly higher 17 than another treatment (P<0.05). ZPOS supplementation resulted higher acetate and propionate levels compared to the control and supplementation 5% palm oil (P<0.05) but 18 19 did not affect butyrate, reducing the A/P ratio and methane production. The PO treatment 20 was dominated by stearate (C18:0), whereas the ZPOS treatments showed higher levels of trans 11 C18:1, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) 21 22 compared to the control. In conclusion, adding protected palm oil in the form of zinc soap enhances fermentability, digestibility, and monounsaturated fatty acid (MUFA) content 23 in rumen liquid. 24

25 Keywords: Palm oil soap, Zinc, fermentability, unsaturated fatty acid ruminal.

26

INTRODUCTION

Early lactation dairy cows experience negative energy balance due to decreased dry matter intake (DMI). Energy requirements can be two to three times higher than the basic maintenance needs because it is used for tissue maintenance after giving birth and milk production (Khotijah et al., 2017). Energy deficiency has detrimental effects, including low production and weight loss in livestock (Tribout et al., 2023). To address this challenge, especially during early lactation, providing additional energy sources through supplements is crucial.

Energy requirements of dairy livestock in tropical regions differ from those in 34 temperate areas due to varying environmental conditions and feed resources. 35 Assessement of the energy balance of tropical and temperate crossbred dairy cows 36 revealed significant differences in serum metabolic profiles, indicating variations in 37 energy utilization and metabolism between the two regions (Ranaweera et al., 2020). 38 Meta-analysis research by Oliveira (2015) found that tropical dairy cows (Bos taurus x 39 40 Bos indicus) have lower MEm requirements and net energy efficiency for milk production is also lower than temperate dairy cattle (Bos taurus). Therefore, understanding these 41 differences is very important to optimize feeding strategies, especially energy source 42 43 supplementation in dairy livestock.

Palm oil is one of the most promising vegetable oils to be used as an energy source
with gross energy (GE) content was 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is
also easily obtainable, resistant to rancidity, and affordable. The global price of palm oil
is \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/mt, coconut
oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains high

levels of unsaturated fatty acids, specifically oleic acid at oleic acid at 39.2% (Mancini et 49 al., 2015). High levels of palmitate are very beneficial for cellulolytic bacteria. 50 Cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby 51 increasing energy availability for metabolic processes. Recent findings by Sears et al. 52 (2024) showed an increase in Prevotella and Fibrobacter populations in response to 53 palmitic acid supplementation. Unsaturated fatty acids contribute to energy efficiency by 54 reducing protozoa (Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane 55 (CH4) production and the acetate/propionate (A/P) ratio by increasing propionate 56 production (Gao et al., 2016). 57

However, oil supplementation also has negative effects. Fat particles tend to coat feed particles, which hinders the adhesion of rumen microbes, especially fibrolytic microbes, thus reducing fiber digestibility (Sears et al., 2024). Rumen microbes defend against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014).

Palm oil used in animal feed must be protected to prevent biohydrogenation and to avoid disrupting rumen bacterial fermentation. It is essential to safeguard polyunsaturated fatty acids to preserve their biological roles, such as being structural components of biomembranes that uphold membrane integrity. Polyunsaturated fatty acids in biomembranes ensure membrane fluidity, which supports the activity of membrane-bound enzymes, facilitates intracellular metabolism, and enhances nutrient utilization efficiency in livestock (Pereira et al., 2022).

One effective method is saponification, which involves binding the free carboxyl groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is commonly used for this purpose (Satir et al., 2023; Vargas-bello-p et al., 2020). In

73

74

addition to Ca, NaOH can also be used to protect the oil (Wulandari et al., 2020). However, the use of Zn minerals for this purpose has not been widely explored.

Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 enzymes, and is involved in DNA synthesis, growth, CO2 transport, essential fatty acid metabolism, and protein and nucleic acid synthesis (Elamin et al., 2013). Studies in vitro observed that supplementing zinc in ruminal fluid increased cellulose digestibility (Martínez & Church, 1970), and concentrations of total volatile fatty acids (VFA) and acetate (Chen et al., 2019). Research of Wang et al. (2021) found that supplementation 20-30mg/kg DM Zn sulfat led to increase nutrient digestibility and ruminal fermentation.

In livestock, Zinc is involved in multiple biochemical functions such as bone 82 metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and 83 spermatogenesis, immune function, and appetite regulation via its effects on the central 84 nervous system (Duffy et al., 2023). The most important of Zinc are cellular respiration, 85 cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane 86 integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup 87 88 et al., 2017). The use of Zn as an oil protector has a double benefit, namely protecting 89 unsaturated fatty acids from the biohydrogenation process of rumen microbes while providing Zn needed for rumen microbes and livestock, whose needs increase in the early 90 91 stages of lactation.

In vitro Zinc soap supplementation research was conducted by Faizah et al.,
(2019), that compared between supplementation of 10% zinc soap from palm oil and 10%
corn. Supplementation with 10% of palm oil zinc soap resulted no different digestibility
of dry matter, organic matter and crude fiber, but the total production of VFA, acetate and
A/P ratio was higher compared to corn oil Zn soap. High acetate levels strongly support

97 the synthesis of milk fatty acids in dairy cows, especially short chain fatty acids. However, 98 there has been no research that explores the contribution of long chain fatty acids, MUFA 99 and PUFA due to zinc soap supplementation as a precursor for the synthesis of long fatty 100 acids and unsaturated fatty acids in milk. The results of this study was provide information 101 regarding the concentration of long chain fatty acids, MUFA and PUFA in the rumen due 102 to zinc soap supplementation, which is expected to be used as a consideration in providing 103 unsaturated fatty acids to increase production and health of dairy livestock.

This study aimed to evaluate the effects of energy and organic zinc supplement, specifically zinc palm oil soap (ZPOS), on fermentability, digestibility, and unsaturated fatty acid profiles in vitro. The benefit of this research is to identify the most efficient form of palm oil supplementation to increase energy supply and improve the profile of unsaturated fatty acids in the rumen without disrupting feed fermentability in vitro. Discovery of the most effective use of palm oil in providing an alternative solution to energy and zinc deficiencies in dairy cattle.

111

MATERIALS AND METHODS

112

Zinc Soap and Feed Preparation

113 The preparation of zinc soap was carried out according to (Cabatit, 1979). The palm oil used to make Zinc soap was a commercial palm oil which generally sold on the 114 115 market. The Zinc soap of palm oil was made based on saponification number. Palm oil is 116 measured for its saponification number and the KOH added is proportional to the saponification number. In order to protect palm oil, zinc chloride (ZnCl2) is added in an 117 118 amount equal to the KOH required to soak the oil, which is determined by the outcomes 119 of reaction stoichiometric calculations. Palm oil was put into a glass beaker and incubated in a water bath at 90°C. KOH that has been dissolved in ethanol is added to hot oil and 120

stirred until the oil is completely hydrolyzed. Next, add the ZnCl2 solution and mix continuously until a paste forms. The final step is to remove the remaining KOH by adding water and washing using a centrifuge. This process produces cream soap called Zinc soap of palm oil (ZPOS). The nutrient content of ZPOS is 24.36% ether extract, 4.2% crude fiber, 4.94% Zn and gross energy 5257 kcal/kg.

The feed consists of forage and concentrate that has been formulated for feeding lactating dairy goats with a content of crude protein (CP) 14% and total degestible nutrients (TDN) 63%. The feed was composed of corn straw, soybean hulls, rice bran, pollard, cassava waste meal, coconut meal, soybean meal and molasses. The composition of ingredients and nutrient content of the ration as shown in Table 1.

131

In Vitro Experiment

The experiment was designed using a completely randomized design with four 132 treatments and five replications. The treatments tested were T0 = basal diet without 133 supplementation, T1 = basal diet + 5% palm oil (PO), T2 = basal diet + 5% partially 134 ZPOS (3.75% ZPOS+1.25% PO), and T3 = basal diet + 5% ZPOS. Rumen liquid as a 135 136 source of inoculum was taken from three female goats with fistulas that belongs to the 137 Faculty of Animal and Agricultural Sciences Diponegoro University, and were homogenized. The goats were given a dietary trial following the ration for in vitro 138 139 substrate for one week before rumen liquid was taken. Rumen liquid was collected before morning feeding from a fistulated rumen. The rumen liquid was filtered using cheese 140 cloth and placed into a 39 °C flasks under anaerobic conditions. 141

In vitro experiments were carried out according to the method of Tilley and Terry (1963). In the fermenter tube, 0.55 grams of feed samples from each treatment were added, followed by 40 ml of McDaugall's solution and 10 ml of rumen liquid. The

145	fermentor cylinder was flowed by CO2 gas and closed to anaerobic conditions. The
146	fermentor tube was incubated in a 39°C water temperature.
147	
148	Nutrient Digestibility
149	The digestibility of nutrients including dry matter (DMD), organic matter (OMD),
150	crude protein (CPD), ether extract (EED) and crude fiber (CFD) was measured through
151	two stages of incubation, namely fermentative and enzymatic. First stage, the fermentor
152	tube was incubated in a 39°C water temperature for 2x24 hours, and process was stopped
153	by immersing the fermenter tube in ice water for 20 minutes. Then the tube was
154	centrifuged for 15 minutes at a speed of 3,000 rpm and the supernatant was discarded.
155	Second stage, the HCL pensin solution was added 50 ml into the tube and reincubated for
156	2x24 hours in a 39°C water temperature under aerobic conditions. The sample was filtered
157	with Whatman No.41 filter paper using a vacuum pump. The filter results were analyzed
158	by DM, Ash, CP, EE and C, NDF, and ADF (AOAC, 2012) to calculate nutrient
159	digestibility values. Fermentation is also carried out without feed samples called blanks.

160 Nutrien digestibility samples are calculated by the formula :

161 Nutrient Digestibility (%)

 $= \frac{(\text{Nutrient sample, g} - (\text{Nutrient residue, g} - \text{Nutrient blank, g})}{\text{nutrient sample, g}} x100$

163

162

164

pH value, VFA, NH3 and Methane production

The process of measuring pH, VFA, and NH3 followed the same procedure as that for nutrient digestibility, but with the fermentation stopped at the 4-hour mark. After centrifuging the fermentor tube at 3,000 rpm for 15 minutes, the supernatant was taken to measure the rumen pH, NH3, and total and partial VFA concentrations. A digital pH

169 meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample 170 was tested three times. NH3 levels were determined using a spectrophotometer, 171 employing a spectrophotometric method based on the catalyzed endophenol reaction to form a stable blue compound (Chaney & Marbach, 1962). Gas chromatography, as 172 reported by (Cottyn & Boucque, 1968), was used to quantify the generation of partial 173 VFAs (acetic acid, propionate, and butyrate). A mililiterl of 95-97% H₂SO₄ was 174 combined with a 10 ml incubation sample. A mililiter of the sample combination was 175 176 mixed with 0.0003 g of dehydrated sulfosalicylate. After that, the mixture was centrifuged 177 for 10 minutes at 7°C at 12,000 rpm. The samples were ready for gas chromatography

178 identification.

The methane gas concentration and energy conversion efficiency was determined by calculating the VFA stoichiometry, which was the estimation using the formula Orskov and Ryle (1990). The formula used for methane concentration were : Methane (mM) = 0.5 (% Acetate) - 0.25 (% Propionate) + 0.5 (% Butyrate). Energy conversion efficiency was calculated based on the stoichiometry of the carbohydrate fermentation reaction from hexose to VFA (acetate, propionate and butyrate). The calculation formula used was:

186
$$E(\%) = \frac{(0,622 \text{ pA} + 1,091 \text{ pP} + 1,558 \text{ pB})}{\text{pA} + \text{pP} + 2\text{pB}} x100$$

187

188

Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid

To calculate protozoa, microbial protein and fatty acid concentrations in the rumen liquid, the fermentation process was carried out for 24 hours. The populations of protozoa were calculated following the procedures of Ogimoto and Imai (1981). The solution used was methil formalin saline which was made from a mixture of 100 ml 35% formaldehyde,

193 2 g tryhan blue, 9 g NaCl and 900 ml aquades. The number of protozoa was calculated by using a microscope at magnification 100 times. Measurement of rumen liquid protein 194 195 microbes using the method of Makkar et al. (1982) on the principle of gradual centrifugation. The fatty acid profile of rumen liquid was analyzed using a gas 196 chromatograph (Model GC-14A, Shimadzu Corporation, Kyoto, Japan). Samples were 197 stored at -20°C until analysis. Following the method of Cocks and Rede (1966), the fatty 198 acid composition was determined by converting oil to fatty acid methyl esters. This 199 200 involved adding 950 µL of n-hexane, 50 mg of oil, and 50 µL of sodium methoxide. The 201 peaks of the fatty acid methyl esters were identified by comparing their retention times with those of authentic standards. The relative percentage of each fatty acid was 202 203 calculated based on its peak area relative to the total peak area of all fatty acids in the sample. Fatty acids were categorized into short-chain fatty acids (SCFA) as having fewer 204 than six carbon atoms, medium chain fatty acids (MCFA) ranging from C6 to C12, and 205 long-chain fatty acids (LCFA), which are greater than C12 (Wang et al., 2020). 206 207 **Statistical Analysis** 208 The data were analyzed using a completely randomized design in SPSS 16. 209 Duncan's Multiple Range Test with significance was set at p < 0.05 to compare treatments 210 when a significant effect was observed. 211 212 RESULTS 213 **Feed Fermentability** 214 The fermentability of feed is determined by various factors such as pH, total protozoa count, microbial protein content, NH3 concentration, and total VFA production 215 216 in rumen liquid. These parameters are detailed in Table 2. The pH levels across all

treatments fell within the normal range of 6.75-6.82. While the treatment did not significantly affect pH (p>0.05), notable differences (p<0.05) were observed in the total protozoa count, microbial protein content, total VFA, and NH3 concentrations. Palm oil supplementation had the most pronounced impact, notably reducing protozoa count and microbial protein. When zinc soap palm oil protection was partially supplemented (T2), it led to higher microbial protein and VFA production compared to feed supplemented with total zinc palm oil soap, although the difference was not significant.

224

Feed Digestibility

225 Table 3 presents the feed digestibility results from the palm oil zinc soap supplementation treatment. Statistical analysis revealed no significant differences in the 226 227 digestibility of dry matter (DMD), organic matter (OMD), and crude protein (CPD) due to the palm oil zinc soap treatment. However, there were significant differences (P<0.05) 228 in the digestibility of ether extract (EED), crude fiber (CFD), neutral detergent fiber 229 (NDFD), and acid detergent fiber (ADFD). Both non-protected and protected palm oil 230 231 increased EED. Improvements in fiber digestibility (CFD, NDFD, and ADFD) were only 232 observed with zinc soap supplementation (T2 and T3), whereas non-protected palm oil 233 showed no difference from the control. The highest fiber digestibility was achieved with partial zinc soap supplementation (T2), though it was not significantly different from the 234 235 total protection zinc soap supplementation (T3).

236

Relative Proportion of VFA

Palm oil (PO and ZPOS) supplementation significantly influenced the partial
VFA production of acetate, propionate, butyrate, the A/P ratio, and methane (P<0.05),
but did not impact the efficiency of hexose energy conversion into VFA. The relative
persentation of VFAs in this study were 59%–62% acetic acid, 24%–29% propionic acid,

and 12%–13% butyric acid. According to Duncan's Mulitiple Range Test results, both
partial (T2) and total (T3) ZSPO supplementation resulted in higher levels of acetate,
propionate, and butyrate compared to PO supplementation (T1) and the control (T0).
Conversely, PO and ZSPO supplementation produced a lower A/P ratio. The estimated
methane production also decreased with PO and ZSPO supplementation.

246

Fatty Acids in Rumen Liquid

Table 5 outlines the fatty acid composition in rumen liquid. The control diet 247 248 primarily contained short-chain fatty acids (SCFA), with a notably higher concentration 249 of C4 compared to other treatments (P<0.05). Supplementation with palm oil (PO and ZSPO) led to increased levels of palmitate (C16:0), stearate (C18:0), and oleate (C18:1) 250 251 relative to the control (P<0.05). However, the proportion of stearate was significantly lower with ZSPO supplementation (P<0.05). Unsaturated fatty acids, particularly cis-9 252 18:1, trans-11 18:1, linoleate (18:2), linolenic acid (18:3), EPA (20:5), and DHA (C22:6) 253 showed a significant increase in the 3.75% ZPOS (T2) and 5% ZSPO (T3) treatments 254 (P<0.05). 255

256 These fatty acids are classified into various categories, including short-chain fatty 257 acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs), 258 saturated fatty acids (SFAs), unsaturated fatty acids (USFAs), monounsaturated fatty 259 acids (MUFAs), and polyunsaturated fatty acids (PUFAs). According to Table 6, the 260 control diet exhibited a higher total content of SCFAs compared to the diets supplemented 261 with PO and ZSPO (P<0.05), but produced a lower amount of LCFA. SFAs showed 262 higher in control and PO suplmentation, whereas ZSPO supplementation demonstrated 263 an ability to elevate USFAs. Notably, the 3.75% ZPOS and 5% ZSPO supplementation resulted in higher levels of both MUFAs and PUFAs compared to the other treatments. 264

265

DISCUSSION

266

Feed Fermentability

267 The pH is one of the crucial factors in assessing rumen health. The findings indicated that adding palm oil and protected palm oil zinc soap did not disrupt the rumen 268 fermentation process. Similar results have been reported in other studies, such as those 269 270 conducted by Adeyemi et al. (2015), Amanullah et al. (2022), and Roy et al. (2017). The reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil, 271 272 particularly lauric acid. According to Rahman et al., (2022), palm oil typically contains 273 about 44% lauric acid (C12:0). Lauric acid is known to have antiprotozoal properties, which can potentially disrupt protozoan cell membranes and inhibit their growth (Santos 274 275 et al., 2022).

Ibrahim et al. (2021) discovered that supplementing with palm oil altered the 276 rumen microbial population in ruminants, potentially affecting their overall protein 277 synthesis capability. Sears et al. (2024) reported that oleic acid significantly reduces 278 Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids 279 280 could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting 281 in decreased protein synthesis. The use of zinc soap palm oil protection, both partially 282 (T2) and fully (T3), can mitigate the harmful effects of unsaturated fatty acids, enabling 283 microbes to develop as effectively as in the control group.

Yanza et al. (2021) found that ruminants given protected medium chain fatty acids (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to increased propionate production. Propionate is formed from the breakdown of glycerol during fat hydrolysis. The NH3 concentration in the T2 treatment was the lowest among

- all treatments, while microbial protein production was the highest. This indicates that
 NH3 is utilized for microbial protein synthesis (Getabalew & Negash, 2020).
- 291

Feed Digestibility

The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were 292 unaffected by 5% non-protected palm oil zinc soap supplementation, indicating that this 293 294 level of supplementation is safe for rumen microbial growth. These results are consistent with previous research, which found that 6% supplementation with vegetable oils (olive 295 296 oil, sunflower oil, and linseed oil) yielded OMD, NDFD, and ADFD values comparable 297 to the control, although linseed oil resulted in higher digestibility than sunflower oil (Vargas-bello-p et al., 2020). The effect of oil supplementation on digestibility is highly 298 299 dependent on the nutrient composition of the feed and the fatty acid profile of the oil. The experimental feed in this study, characterized by high fiber content and low ADF 300 (13.77%), supports the proliferation of cellulolytic microbes. A high-fiber diet may 301 mitigate the potential negative impact of oil on fiber digestion by rumen microbes 302 303 (Benchaar et al., 2015). Both non-protected (T1) and protected (T2 and T3) palm oil 304 increased EED, supporting the conclusion that palm oil can be use d as an energy 305 supplement without compromising rumen feed fermentability.

A notable finding from this research is that both partial and total zinc soap supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and ADFD. This effect is likely due to the fat and zinc content in palm oil. Palm oil contains high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki et al., 2015). Research by Sears et al. (2024) indicate an increase in Prevotella and Fibrobacter populations in response to palmitic acid supplementation. This suggests that cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby increasing

energy availability for metabolic processes. Furthermore, zinc is crucial for variousmetabolic functions in rumen microbes.

Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing 315 enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain et 316 al., 2016; Unival et al., 2017). It is indispensable for preserving the structural and 317 functional integrity of over 2000 transcription factors and 300 enzymes. It can be 318 contended that virtually all metabolic pathways are reliant, to varying degrees, on at least 319 320 one Zn-dependent protein (Ranasinghe et al., 2015). Recent research by Fellner et al. 321 (2021) elucidated that Zn supplementation precipitated increased acetate production and a heightened acetate/prothionate ratio. This delineates an augmented fiber digestion 322 323 process facilitated by cellulolytic bacteria, consequent to heightened microbial protein synthesis. This conclusion aligns with findings indicating elevated levels of microbial 324 protein compared to PO supplementation (P1), specifically 13.37 (T2) and 11.41 (T3) 325 versus 9.37 mg/ml in the P1 treatment (Table 3). 326

327

Relative Proportion of VFA

328 The relative proportion of acetate observed is slightly lower than that reported by 329 Anzhany et al. (2024), which ranged from 69% to 72%, while the proportions of propionate and butyrate are comparatively higher. According to Amanullah et al. (2022), 330 331 palm oil supplementation modifies the rumen environment, thereby altering the ratio of 332 cellulolytic to amylolytic microbes. Both partial and total ZSPO supplementation resulted in significantly higher acetate production compared to non-protected palm oil (P<0.05). 333 334 These findings are consistent with the increased microbial protein levels observed with 335 ZSPO supplementation, suggesting enhanced bacterial growth. Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 enzymes, and is involved in DNA 336

synthesis, growth, CO2 transport, essential fatty acid metabolism, and protein and nucleic
acid synthesis (Elamin et al., 2013).

The increase in propionate in the ZSPO supplementation treatment resulted from 339 the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted 340 into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated 341 fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids 342 from rumen bio-hydrogenation and increasing the duodenal flows of mono and 343 344 polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with 345 studies showing that ZSPO supplementation leads to an increase in protozoan populations (Table 4). Zinc supplementation has been associated with shifts in rumen volatile fatty 346 347 acid profiles, notably an increase in propionate and a reduction in the acetate-topropionate ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane 348 production and a lower A/P ratio are advantageous, as higher propionate levels provide a 349 350 carbon framework and synthetic energy for livestock.

351

Fatty Acids in Rumen Liquid

352 Previous research showed that oil supplementation caused a decrease in the 353 proportion of short chain fatty acids in rumen fluid, while increasing the presence of long 354 chain fatty acids. Mancini et al. (2015) argue that this transition is caused by the large 355 number of long chain fatty acids (LSFA) in palm oil, namely 98.3%, and the remaining 1.7% consists of short chain fatty acids (SCFA). Among long-chain fatty acids, which 356 357 account for 98.3% of the total, almost half (49.9%) are unsaturated fatty acids (USFA), 358 consisting of 39.2% monounsaturated fatty acids (MUFA) and 10 .5% polyunsaturated 359 fatty acids (PUFA). The prevalence of saturated fatty acids (SFA) in palm oil contributes to the range of rumen saturated fatty acid levels, where PO supplementation treatment 360

361 (T1) has higher SFA levels compared to ZPOS supplementation, namely T1 71.14%, T2
362 61.85% and T3 59.67% (Table 6).

Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities, 363 namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and 364 glycerol. Unsaturated fatty acids including oleic acid (18:1) undergo a biohydrogenation 365 process, it being converted into saturated fatty acids stearic acid (18:0) in the rumen by 366 bacteria (Buccioni et al., 2012). Harvatine et al. (2009) who tracked the biohydrogenation 367 368 process of oleic acid found that oleate in the rumen can change into trans and cis forms 369 because rumen microbes produce cis/trans isomesase enzymes, and there is an isomerase that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate) to trans 18:1. The 370 371 dominant biohydrogenation process that occurs in the rumen is bacteria hydrogenate polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 fatty acids, then 372 trans 18:1 fatty acids into stearic acid (18:0). 373

Consistent with our study's findings, supplementation with ZSPO (T2 and T3) 374 375 resulted in elevated levels of trans18:1 and cis 18:1, alongside reduced stearate (18:0) 376 concentrations compared to non-protected oil supplementation (T1). Amanullah et al. 377 (2022) conducted a comparative analysis involving corn oil, linseed oil, and Ca salt (protected C18:2n-6), revealing that protected fatty acids (Ca Salt) led to diminished 378 379 stearate levels but higher proportions of MUFA and PUFA. These findings are consistent 380 with the research by Satir et al. (2023), which demonstrated that 3% protected palm oil supplementation can increase the content of palmitic acid (SFA) and oleic acid 381 382 (MUFA).Stearate is the final product of the biohydrogenation of oleic, linoleic, and linolenic acids. This indicates a complete inhibition of the biohydrogenation process in 383 the ZSPO treatment. The protection of polyunsaturated fatty acids through saponification 384

385 involves bonding the carboxyl group with zinc, resulting in the inhibition of isomerization, which is a prerequisite for the hydrogenation of unsaturated fatty acids into 386 387 saturated fatty acids. This is reflected in the higher proportion of MUFA in the ZSPO treatment compared to PO and the control (Table 6). The substantial presence of PUFA, 388 notably EPA and DHA, underscores Zinc's role in the elongation and desaturation 389 process, facilitated by the formation of arachidonic acid (20:4) through delta-6-desaturase 390 (D6D) and delta-5-desaturase (D5D) enzymes (Ridgway, 2016). Zinc's indispensability 391 392 is further highlighted as a pivotal mineral cofactor for D6D and D5D enzymes (Noland 393 & Drisko, 2020).

Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen, particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZSPO supplementation holds potential for enhancing the quality of meat and milk fat.

- 399
- 400

CONCLUSION

Based on the results of this research, it can be concluded that zinc soap from palm
oil (ZPOS) can be developed as a source of energy and organic Zn. Its supplementation
in feed as much as 5% has beneficial effects, namely increasing fermentability, MUFA,
EPA and DHA in the rumen . It was indicated that partial suplementation of ZPOS (3.75%
ZPOS+1.25%PO) resulted in higher protozoa populations and fiber digestibility. Further
investigation is required to test the ZPOS on dairy cow in vivo.

- 407
- 408

409	CONFLICT OF INTEREST
410	The authors declare that there is no conflict of interest with any financial, personal,
411	or other relationships with other people or organization related to the material discussed
412	in the manuscript.
413	
414	ACKNOWLEDGEMENT
415	The research was funded by Faculty of Animal and Agricultural Science,
416	Diponegoro University.
417	
418	REFERENCES
419	Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A.
420	Karsani, & A. Q. Sazili. 2015. Influence of Carotino Oil on in Vitro Rumen
421	Fermentation, Metabolism and Apparent Biohydrogenation of Fatty Acids. Animal
422	Science Journal. 86(3):270-78. https://doi.org/10.1111/asj.12279.
423	Amanullah, S. M., Seong-shin Lee, D. Hand, Vi. Paradhipta, Young-hoo Joo, Dong-
424	hyeon Kim, Pil-nam Seong, Seung-min Jeong, & Sam-churl Kim. 2022. Impact
425	of Oil Sources on In Vitro Fermentation , Microbes , Greenhouse Gas , and Fatty
426	Acid Profile in the Rumen. Fermentation. 8(5):242.
427	https://doi.org/10.3390/fermentation8050242.
428	Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid Biohydrogenation,
429	Fermentation, and Digestibility of Ration Containing Napier and King Grass with
430	Different Harvest Ages and Altitudes: In Vitro Study. Tropical Animal Science
431	Journal. 47(1):68-78. https://doi.org/10.5398/tasj.2024.47.1.68.
432	AOAC. 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical

433 Chemists: Washington, DC.

Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil
Supplementation to Dairy Cows Fed Diets Based on Red Clover Silage or Corn
Silage: Effects on Methane Production, Rumen Fermentation, Nutrient Digestibility,
N Balance, and Milk Production. Journal of Dairy Science. 98(11):7993–8008.
https://doi.org/10.3168/jds.2015-9398.

- Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid
 Metabolism in the Rumen: New Insights on Lipolysis and Biohydrogenation with
 an Emphasis on the Role of Endogenous Plant Factors. Animal Feed Science and
 Technology. 174:1–25. https://doi.org/10.1016/j.anifeedsci.2012.02.009.
- 443 Cabatit, B. C. 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press: Manila.
- 444 Chaney, A. L., & E. P. Marbach. 1962. Modified Reagents for Determination of Urea
 445 and Ammonia. Clinical Chemistry. 8(2):130–32.
 446 https://doi.org/10.1093/clinchem/8.2.130.
- 447 Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of Zinc-Bearing
- Palygorskite on Rumen Fermentation in Vitro. Asian-Australasian Journal of
 Animal Sciences. 32(1):63–71. https://doi.org/10.5713/ajas.17.0920.
- 450 Cocks, L. V., & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis.
 451 Academic Press: London.
- 452 Cottyn, B. .., & C. V. Boucque. 1968. Rapid Method for the Gas-Chromatographic
 453 Determination of Volatile Fatty Acids in Rumen Fluid. J.Agric.Food Chem. 16:105–
 454 7. https://doi.org/10.1021/jf60155a002.
- 455 Duffy, R., M. Yin, & L. E. Redding. 2023. A Review of the Impact of Dietary Zinc on
 456 Livestock Health. Journal of Trace Elements and Minerals. 5(June):100085.

- 457 https://doi.org/10.1016/j.jtemin.2023.100085.
- 458 Elamin, K. M., N. A. Dafalla, K. A. Abdel Atti, & A. A. Tameem Eldar. 2013. Effects
- of Zinc Supplementation on Growth Performance and Some Blood Parameters of
 Goat Kids in Sudan. International Journal of Pure and Applied Biological Research
 and Sciences, 1(1):1–8.
- Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The Effect of Total or Partial
 Protected Vegetable Oil Supplementation on In Vitro Digestibility, Feed
 Fermentability and Energy Efficiency. Buletin Peternakan. 43(3):171–78.
 https://doi.org/10.21059/buletinpeternak.v43i3.43231.
- Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of Supplemental
 Zinc on Ruminal Fermentation in Continuous Cultures*. Applied Animal Science.
 37(1):27–32. https://doi.org/10.15232/aas.2020-02104.
- 469 Gao, Jian, Meng-zhi Wang, Yu-jia Jing, Xue-zhao Sun, Tian-yi Wu, & Liang-feng

470 Shi. 2016. Impacts of the Unsaturation Degree of Long-Chain Fatty Acids on the

- 471 Volatile Fatty Acid Profiles of Rumen Microbial Fermentation in Goats in Vitro.
- 472 Journal of Integrative Agriculture. 15(12):2827–33. https://doi.org/10.1016/S2095-
- 473 3119(16)61418-1.
- Getabalew, Mebrate, & Ayele Negash. 2020. Nitrogen Metabolism and Recycling in
 Ruminant Animals : A Review College of Agricultural and Natural Resources
 Science ,. Academic Journal of Nutrition. 9(3):29–38.
 https://doi.org/10.5829/idosi.ajn.2020.29.38.
- Harvatine, K. J., Y. R. Boisclair, & D. E. Bauman. 2009. Recent Advances in the
 Regulation of Milk Fat Synthesis. Animal. 3(1):40–54.
 https://doi.org/10.1017/S1751731108003133.

- Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The Role of Zinc, Manganse
 and Copper in Rumen Metabolism and Immune Function: A Review Article. Open
 Journal of Animal Sciences. 6:304–24. https://doi.org/10.4236/ojas.2016.64035.
- 484 Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, Su Chui Len Candyrine,
- 485 W. N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of
- Vegetable Oil Supplementation on Rumen Fermentation and Microbial Population
 in Ruminant: A Review. Tropical Animal Health and Production. 53(4):1–11.
 https://doi.org/10.1007/s11250-021-02863-4.
- Khaskheli, A. A., & L. Chou. 2020. Evaluation of Fatty Acids Composition,
 Metabolizable Energy, Nutrients Digestibility of Crude Palm Oil Fat Crystals in
 Turkeys. Animal Feed Science and Technology. 270(October):114734.
 https://doi.org/10.1016/j.anifeedsci.2020.114734.
- Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of
 Sunflower Oil Supplementation as Unsaturated Fatty Acid Source on Rumen
 Fermentability and Performance of Lactating Garut Ewes. Journal of the Indonesian
 Tropical Animal Agriculture. 42(3):185–93.
 https://doi.org/10.14710/jitaa.42.3.185-193.
- Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-Chemical Properties, Fatty
 Acid Profile and Nutrition in Palm Oil. Journal of Paramedical Sciences (JPS).
 6(3):117–34.
- 501 Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple
- 502 Determination of Microbial Protein in Rumen Liquor. J. Dairy Sci. 65(11):2170–73.
 503 https://doi.org/10.3168/jds.S0022-0302(82)82477-6.
- 504 Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono.

- 505 2015. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects
 506 on Health. Molecules. 20:17339–61. https://doi.org/10.3390/molecules200917339.
- Martínez, Andres, & D. C. Church. 1970. Effect of Various Mineral Rumen Cellulose
 Elements. Journal of Animal Science. 31(5):982–90.
 https://doi.org/10.2527/jas1970.315982x.
- Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of Different Vegetable Oils
 on In Vitro Ruminal Fermentability and Nutrient Digestibility in Ettawah Crossbred
 Goat. Animal Production. 21(1):22–29.
 https://doi.org/10.20884/1.jap.2019.21.1.689.
- 514 Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan.
- 515 2015. The Role of Ciliate Protozoa in the Rumen. Frontiers in Microbiology. 6:1–
 516 14. https://doi.org/10.3389/fmicb.2015.01313.
- 517 Noland, D., & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition
 518 Therapy. In edited by L. Wagner (Eds). Humana Press: Switzerland.
- 519 Ogimoto, Keiji, & Soichi Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific
 520 Societies Press.
- 521 Oliveira, André Soares. 2015. Meta-Analysis of Feeding Trials to Estimate Energy
- Requirements of Dairy Cows under Tropical Condition. Animal Feed Science and
 Technology. 210:94–103. https://doi.org/10.1016/j.anifeedsci.2015.10.006.
- 524 Orskov, E. R., & M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied
 525 Science: London (UK).
- 526 Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui
- 528 Linseed Fat to Postpartum Dairy Cows on Plasma n-3 Polyunsaturated Fatty Acid

527

J. B. Bessa, & L. Lopes-da-costa. 2022. Effects of Feeding Rumen-Protected

- 529 Concentrations and Metabolic and Reproductive Parameters. J. Dairy Sci. 105:361–
 530 74. https://doi.org/10.3168/jds.2021-20674.
- Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The Composition of Fatty
 Acids in Several Vegetable Oils from Indonesia. Biodiversitas. 23(4):2167–76.
 https://doi.org/10.13057/biodiv/d230452.
- Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P.
 Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of Zinc
 Supplementation on Serum Lipids: A Systematic Review and Meta-Analysis.
 Nutrition and Metabolism. 12(1). https://doi.org/10.1186/s12986-015-0023-4.
- 538 Ranaweera, K. K. T. N., M. B. P. K. Mahipala, & W. M. P. B. Weerasinghe. 2020.
- 539
 Evaluation of Energy Balance in Tropical and Temperate Crossbred Dairy Cows at
- 540 Post-Partum Transition Stage: A Case Study. Tropical Agricultural Research.
 541 31(2):12. https://doi.org/10.4038/tar.v31i2.8363.
- 542 Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. In edited by
 543 R.S. McLeod (Eds). Elsevier: Netherland.
- 544 Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of Different Vegetable Oils on
- Rumen Fermentation and Conjugated Linoleic Acid Concentration in Vitro.
 Veterinary World. 10(1):11–16. https://doi.org/10.14202/vetworld.2017.11-16.
- 547 Santos, Francisco A., Gabriela S. Cruz, Filipe A. Vieira, Bruno R. S. Queiroz,
- 548 Cleverson D. T. Freitas, Felipe P. Mesquita, & Pedro F. N. Souza. 2022.
- 549 Systematic Review of Antiprotozoal Potential of Antimicrobial Peptides. Acta
 550 Tropica. 236:106675. https://doi.org/10.1016/j.actatropica.2022.106675.
- Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of Adding Rumen Protected
 Palm Oil in Diet on Milk Fatty Acid Profile and Lipid Health Indices in Kivircik

- 553 Ewes. Tropical Animal Health and Production. 55:159.
 554 https://doi.org/10.1007/s11250-023-03580-w.
- 555 Sears, A., F. Hentz, J. de Souza, B. Wenner, Robert E. Ward, & F. Batistel. 2024.
- 556 Supply of Palmitic, Stearic, and Oleic Acid Changes Rumen Fiber Digestibility and
- 557 Microbial Composition. J. Dairy Sci. 107(2):902–16.
 558 https://doi.org/10.3168/jds.2023-23568.
- Shingfield, K. J., & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in
 Ruminants and Humans. Pp. 1–65 in Conjugated Linoleic Acids and Conjugated
 Vegetable Oils, In edited by B. Sels and A. Philippaerts (Eds). The Royal Society of
 Chemistry.
- Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in
 the Animal Organism: A Review. Scientia Agriculturae Bohemica. 48(1):13–21.
 https://doi.org/10.1515/sab-2017-0003.
- 566 Swain, Partha S., Somu B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016.
- Nano Zinc, an Alternative to Conventional Zinc as Animal Feed Supplement: A
 Review. Animal Nutrition. 2(3):134–41.
 https://doi.org/10.1016/j.aninu.2016.06.003.
- Tilley, J. M. A., & R. A. Terry. 1963. A Two-Stage Technique for the in Vitro Digestion
 of Forage Crops. Grass and Forage Science. 18(2):104–11.
 https://doi.org/10.1111/j.1365-2494.1963.tb00335.x.
- 573 Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P.
- 574 **Faverdin**. 2023. Genetic Relationships between Weight Loss in Early Lactation and
- 575 Daily Milk Production throughout Lactation in Holstein Cows. J. Dairy Sci.
 576 106:4799–4812. https://doi.org/10.3168/jds.2022-22813.

577	Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017.
578	Comparative Efficacy of Zinc Supplementation from Different Sources on Nutrient
579	Digestibility, Hemato-Biochemistry and Anti-Oxidant Activity in Guinea Pigs.
580	Livestock Science. 204:59-64. https://doi.org/10.1016/j.livsci.2017.08.009.

581 Vargas-bello-p, Einar, Lizbeth Esmeralda Robles-jimenez, Rafael Ayala-hern, Jose

- Romero-bernal, Nazario Pescador-salas, & Octavio Alonso. 2020. Effects of
 Calcium Soaps from Palm, Canola and Safflower Oils on Dry Matter Intake,
 Nutrient Digestibility, Milk Production, and Milk Composition in Dairy Goats.
 Animals. 10(1728). https://doi.org/10.3390/ani10101728.
- Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L.
- Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of Zinc Sulfate and Coated Zinc
 Sulfate on Lactation Performance, Nutrient Digestion and Rumen Fermentation in
 Holstein Dairy Cows. Livestock Science. 251(July 2020).
 https://doi.org/10.1016/j.livsci.2021.104673.
- Wang, Siyu, Yu Wang, Fereidoon Shahidi, & Chi-Tang Ho. 2020. Health Effects of
 Short-Chain, Medium-Chain, and Long-Chain Fatty Acids, Saturated Vs
 Unsaturated and Omega-6 Vs Omega-3 Fatty Acids and Trans Fats. Pp. 1–22 in
 Bailey's Industrial Oil and Fat Products.
- 595 Wardeh, Muhammad Fadel. 1981. "Models for Estimating Energy and Protein
 596 Utilization for Feeds: All Graduate Theses and Dissertations." Utah State University.
- World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group The
 World Bank: Washington- USA.
- Wulandari, B.P. Widyobroto, & A. Agus. 2020. In Vitro Digestibility and Ruminal
 Fermentation Profile of Pangola Grass (Digitaria Decumbens) Supplemented with

601	Crude Palm Oil Protected by Sodium Hydroxide. Livestock Research for Rural
602	Development. 32.

603 Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, Min Gao, H.

- 604 Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The Effects of Dietary
- 605 Medium-Chain Fatty Acids on Ruminal Methanogenesis and Fermentation in Vitro
- and in Vivo: A Meta-Analysis. Journal of Animal Physiology and Animal Nutrition.
- 607 105(5):874–89. https://doi.org/10.1111/jpn.13367.
- 608
- 609

	Item	Composition
	Ingredient :	
	Corn straw	33.38
	Soybean hull	12.25
	Rice bran	7.42
	Pollard	9.32
	Cassava waste meal	9,93
	Coconut meal	17.01
	Soybean meal	6.98
	Molases	3.00
	Vitamin and mineral mixture	0.80
	Nutrient composition :	
	Dry matter (DM), %	84.68
	Ash, %DM	8.63
	Crude protein, %DM	14.32
	Ether extract, %DM	4.43
	Crude fiber, %DM	20.02
	Calsium, %DM	0.33
	Phospor, %DM	0.28
	Zinc, mg/kg DM	16,93
	Neutral detergent fiber, %DM	35.51
	Acid detergent fiber, %DM	14.77
	Total digestible nutrient (TDN) ¹ , %	63.15
611	¹ Total digestible nutrients (TDN) were calculated	l using TDN (%DM) = TDN =

osition of experimental diet (dry matter basis). T. I.I. 1 T 1. and alternational and

-17.2649 + 1.2120(PK) + 0.8352(BETN) + 2.4637(LK) + 0.4475(SK), according612 to (Wardeh, 1981).

- 613
- 614

615 616

617

Table 2. The pH, total protozoa, microbial protein, NH3, and total VFA production of rumen liquid due to supplementation of the zinc soap palm oil (ZPOS)

Donomoton	Treatment				OEM	. V.L.
Parameter	Т0	T0 T1 T2 T3		SEM	p-Value	
рН	6,76	6,75	6,73	6,82	0,018	0,224
Protozoa (10 ³ cell/ml)	98,14 ^a	32,57°	82,83 ^{ab}	69,31 ^b	0,044	0,000
Microbial protein (mg/ml)	13,01 ^a	9,37 ^b	13,37 ^a	11,41 ^{ab}	0,469	0,002
NH ³ (mM)	14,06 ^a	14,45 ^a	9,64 ^b	10,36 ^b	0,543	0,000
VFA (mM)	87,52 ^b	101,78 ^b	164,38ª	157,89ª	8,134	0,000

a,b different superscripts at the same column indicate significant differences (P<0.05). 618 T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal 619 diet+partially ZPOS(3.75% ZPOS+1.25%PO); T3= basal diet+5% ZPOS

622

623

624

⁶²⁰ 621

27	011 (ZPOS).						
	Parameter		Trea	SEM	p-Value		
	Farameter	T0	T1	T2	T3	SEM	p-value
	Digestibility :						
	Dry matter (%)	64.06	63.82	67.20	69.24	0,850	0,054
	Organic matter (%)	69.16	65.89	69.65	69.98	0,632	0,068
	Crude protein (%)	68.69	67.99	66.39	65.11	0,569	0,100
	Ether extract (%)	88.45 ^b	94.34 ^a	93.22 ^a	92.35 ^a	0,587	0,000
	Crude fiber (%)	54.46 ^b	51.46 ^b	73.63 ^a	66.11 ^{ab}	3,057	0,020
	Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03 ^a	64.62 ^{ab}	2,830	0,006
	Acid detergent fiber (%)	45,12 ^b	44.56 ^b	65.81 ^a	53.76 ^{ab}	2,704	0,006

Table 3. Feed nutrient in vitro digestibility due to supplementation of the zinc soap palm
 oil (ZPOS).

a,b different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal

630 diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

Table 4. Fermentability of feed due to palm oil supplementation in vitro

Demonster		Treat	CEM	X7 1		
Parameter	Т0	T1	T2	Т3	SEM	p-Value
Acetate (mM)	41,17 ^b	51,10 ^a	59,31ª	65,80 ^a	2,579	0,000
Propionate (mM)	15,91°	25,41 ^b	28,73ª	29,89ª	1,348	0,000
Butyrate (mM)	8,73 ^b	10,28 ^b	12,55ª	14,20 ^a	0,546	0,000
A/P	2,59 ª	2,01 ^b	2,06 ^b	2,20 ^b	0,061	0,000
Methan (mM)	31,87ª	28,04 ^b	28,58 ^b	29,57 ^{ab}	0,489	0,014
Efficiency of energy conversion (%)	73,05	73,19	74,74	74,47	0,357	0,226

 a,b different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

Table 5. Proportion of fatty Acids in rumen liquid due supplemented of zinc soap palm Oil (ZPOS) In Vitro

Fatty Acids		Treati	SEM	p-Valu		
Party Actus	T0	T1	T2	T3	SLIVI	p-van
		%	fat			
Short chain Fatty Acids (SCFA)						
C4	7,34 ^a	5,34 ^b	5,27 ^b	2,36 ^c	0,435	0,000
Medium chain Fatty Acids (SCFA)						
C6	<0,1	<0,1	<0,1	<0,1	-	-
C8, kaprilat	<0,1	<0,1	<0,1	<0,1	-	-
C10, kaprat	<0,1	<0,1	<0,1	<0,1	-	-
C12, laurat	1,38	1,15	1,22	1,2	0,044	0,299
Long chain Fatty Acids (LCFA)						
C13	0,3ª	0,17 ^a	<0,1 ^b	<0,1 ^b	0,030	0,000
C14, miristat	2,19	1,85	2,3	1,68	0,063	0,054
C14:1	1,00	0,5	0,57	0,44	0,072	0,053
C15,	0,51	0,75	0,36	0,33	0,056	0,055
C15:1	0,34	0,23	0,16	0,21	0,025	0,05
C16, palmitat	22,03 ^b	29,34ª	29,23ª	31,14 ^a	0,854	0,000
C16:1, n7	1,12 ^b	1,04 ^b	1,36 ^{ab}	1,5ª	0,058	0,005
C17	0,39	0,23	0,23	0,28	0,025	0,052
C17:1	<0,1	<0,1	<0,1	<0,1	-	-
C18, stearate	40,13 ^a	30,74 ^b	23,17 ^b	21,5 ^b	2,198	0,002
trans 11 C18:1	12,55°	17,84 ^b	26,16 ^a	28,05ª	1,476	0,834
cis 9 C18:1, oleat	1,09 ^b	1,43 ^b	1,99ª	1,83ª	0,099	0,000
C18:2	1,04°	1,31 ^{bc}	1,6 ^{ab}	1,86ª	0,084	0,000
C18:3	<0,1	<0,1	<0,1	<0,1	-	-
C18:3, omega 6	0,22 ^b	0,26 ^b	0,45ª	0,53ª	0,032	0,000
C18:3,gamma linolenat	0,79ª	<0,1°	0,38 ^b	0,41 ^b	0,064	0,000
C20	1,31	0,83	0,64	0,67	0,050	0,058
cis 11 C20:1	0,16 ^b	0,59ª	0,31 ^b	0,23 ^b	0,041	0,000
cis 11-14 C20:2	<0,1	<0,1	<0,1	<0,1	-	-
C20:3	<0,1	<0,1	<0,1	<0,1	-	-
C20:4, arakidonat	0,48 ^a	$< 0,1^{b}$	<0,1 ^b	<0,1 ^b	0,048	0,000
C20:5, EPA	0,07°	0,55 ^b	0,59 ^b	0,76 ^{ab}	0,069	0,000
C21	1,38	0,31	0,2	0,26	0,017	0,000
C22, behenate	0,94ª	0,43 ^{ab}	0,23 ^b	0,25 ^b	0,042	0,050
C22:1	<0,1	<0,1	<0,1	<0,1	-	-
C22:6, DHA	3,19 ^b	4,81ª	4,57 ^a	4,42ª	0,159	0,000
C24	<0,1	<0,1	<0,1	<0,1	-	-
C24:1, nervonat omega 9	<0,1	<0,1	<0,1	<0,1	_	_

a,b different superscripts at the same column indicate significant differences (P<0.05).

 $T_0 = basal diet without supplementation; T_1 = basal diet+5\% palm oil; T_2 = basal$

diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

659

660

Table 6. Proportion of short chain, long chain, saturated and unsaturated fatty acids in
 rumen liquid due with supplemented of zinc soap palm Oil (ZPOS) In Vitro 661

Fotty A oids	Treatment					X 7 1		
Fatty Acids	T0	T1	T2	T3	SEM	p-Value		
% fat								
Amount of fatty acids :								
SCFA	7,34ª	5,34 ^b	5,27 ^b	2,36°	0,453	0,000		
MCFA	1,38ª	1,15 ^b	1,22 ^b	1,2 ^b	0,028	0,009		
LCFA	91,23°	93,41 ^b	93,50 ^b	96,35ª	0,443	0,000		
SFA	77,9ª	71,14 ^b	61,85°	59,67°	1,766	0,000		
USFA	22,05°	28,76 ^b	38,14 ^a	40,24ª	1,722	0,000		
MUFA	16,26°	21,63 ^b	30,55ª	32,26 ^a	1,531	0,000		
PUFA	5,79°	7,13 ^b	7,59ª	7,98ª	0,201	0,000		

a,b different superscripts at the same column indicate significant differences (P<0.05). 662

SA= short chain fatty acids, LA= long chain fatty acids, SFA= saturated fatty acids, 663

UFA= unsaturated fatty acids (UFA), MUFA= monounsaturated fatty acids, dan PUFA= 664 polyunsaturated fatty acids. 665

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal 666

diet+partially ZPOS (3.75% ZPOS+1.25%PO); T3= basal diet+5% ZPOS 667

Anis Muktiani <anis.muktiani@gmail.com>

[TASJ] Revision Required of Your Manuscript

Prof. Dr. Komang G Wiryawan <jurnal@apps.ipb.ac.id> To: Anis Muktiani <anismuktiani@gmail.com> Fri, Jul 19, 2024 at 1:55 PM

Dear Anis Muktiani:

It is my pleasure to inform you that your submission to Tropical Animal Science Journal, "Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability, Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid" had been examined by Editor. Please find the comments and suggestions:

Submission URL: https://journal.ipb.ac.id/index.php/tasj/authorDashboard/submission/56357 Username: {\$authorUsername}

If you decide to revise the manuscript, please give a response or rebuttal against each point which are suggested by Editor. The revised document should include revision note file in table form and revised manuscript in MS Word file. Please return back the documents to the editor within 14 days via OJS, we would be glad if you submit your revised manuscript as soon as possible.

If you have any questions, please contact me.

Prof. Dr. Komang G Wiryawan Tropical Animal Science Journal kgwiryawan@yahoo.com

Tropical Animal Science

Journal http://journal.ipb.ac.id/index.php/tasj

2 attachments

C-Form D_TASJ-56357.doc 958K

C-C-Manuscript TASJ-56357-revised July 9 (File 1).docx 117K

Tropical Animal Science

Faculty of Animal Science Building, IPB University Jln. Agatis, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: https://journal.ipb.ac.id/index.php/tasj

PAPER EVALUATION

Paper Title: Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability, Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid

Comments (please use additional paper if more space is needed)

No	Comments	Author's response
1	Generally, the authors have revised the manuscript following	
	the reviewer suggestions. However, the references writing	
	need to be revised.	
2	References	
	a) Please provide link for the references below:	
	Elamin, K. M., N. A. Dafalla, K. A. Abdel Atti, & A. A.	
	Tameem Eldar. 2013. Effects of Zinc Supplementation on	
	Growth Performance and Some Blood Parameters of Goat	
	Kids in Sudan. International Journal of Pure and Applied	
	Biological Research and Sciences, 1(1):1–8.	
	Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-	
	Chemical Properties, Fatty Acid Profile and Nutrition in	
	Palm Oil. Journal of Paramedical Sciences (JPS). 6(3):117–	
	34.	
	Wang, Siyu, Yu Wang, Fereidoon Shahidi, & Chi-Tang	
	Ho. 2020. Health Effects of Short-Chain, Medium-Chain,	
	and Long-Chain Fatty Acids, Saturated Vs Unsaturated and	
	Omega-6 Vs Omega-3 Fatty Acids and Trans Fats. Pp. 1–22	
	in Bailey's Industrial Oil and Fat Products.	
	Wulandari, B.P. Widyobroto, & A. Agus. 2020. In Vitro Digestibility and Ruminal Fermentation Profile of Pangola	
	Grass (Digitaria Decumbens) Supplemented with Crude	
	Palm Oil Protected by Sodium Hydroxide. Livestock	
	Research for Rural Development. 32.	
	b) <i>Please check the writing of author's names</i> . They must	
	be written following on the journal's guidelines	
	c) Cottyn (1968): write all authors	
	c) couji (1900). which an autions	

2

1

3

4

ABSTRACT

Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability and

Unsaturated Fatty Acid Profile in Rumen Liquid

5 This study aimed to evaluate the effects of energy and organic zinc supplement, specifically zinc palm oil soap (ZPOS), on fermentability, and unsaturated fatty acid 6 profiles in vitro. The study used a completely randomized design with 4 treatments and 5 7 8 replications. The treatments were: T0 (basal diet without supplementation), T1 (basal diet 9 + 5% palm oil, PO), T2 (basal diet + 5% partially ZPOS: 3.75% ZPOS + 1.25% PO), and T3 (basal diet + 5% ZPOS). The inoculum source was rumen liquid from three fistulated 10 11 female dairy goats, and were homogenized. The goats were feed on consisted of corn straw, soybean hulls, and concentrate (TDN 63%, CP 14%, NDF 35%). Results showed 12 that both partial and full ZPOS supplementation (T2 and T3) resulted in higher VFA and 13 microbial protein production, and lower NH3 levels compared to the control (P<0.05). 14 15 Partial ZPOS supplementation (T2) resulted DM, OM, and CP digestibility were similar 16 among the treatments, but digestibility of EE, CF, NDF, and ADF was significantly higher 17 than another treatment (P<0.05). ZPOS supplementation resulted higher acetate and propionate levels compared to the control and supplementation 5% palm oil (P<0.05) but 18 19 did not affect butyrate, reducing the A/P ratio and methane production. The PO treatment 20 was dominated by stearate (C18:0), whereas the ZPOS treatments showed higher levels of trans 11 C18:1, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) 21 22 compared to the control. In conclusion, adding protected palm oil in the form of zinc soap enhances fermentability, digestibility, and monounsaturated fatty acid (MUFA) content 23 in rumen liquid. 24

25 Keywords: Palm oil soap, Zinc, fermentability, unsaturated fatty acid ruminal.

26

INTRODUCTION

Early lactation dairy cows experience negative energy balance due to decreased dry matter intake (DMI). Energy requirements can be two to three times higher than the basic maintenance needs because it is used for tissue maintenance after giving birth and milk production (Khotijah et al., 2017). Energy deficiency has detrimental effects, including low production and weight loss in livestock (Tribout et al., 2023). To address this challenge, especially during early lactation, providing additional energy sources through supplements is crucial.

Energy requirements of dairy livestock in tropical regions differ from those in 34 temperate areas due to varying environmental conditions and feed resources. 35 Assessement of the energy balance of tropical and temperate crossbred dairy cows 36 revealed significant differences in serum metabolic profiles, indicating variations in 37 energy utilization and metabolism between the two regions (Ranaweera et al., 2020). 38 Meta-analysis research by Oliveira (2015) found that tropical dairy cows (Bos taurus x 39 40 Bos indicus) have lower MEm requirements and net energy efficiency for milk production is also lower than temperate dairy cattle (Bos taurus). Therefore, understanding these 41 differences is very important to optimize feeding strategies, especially energy source 42 43 supplementation in dairy livestock.

Palm oil is one of the most promising vegetable oils to be used as an energy source
with gross energy (GE) content was 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is
also easily obtainable, resistant to rancidity, and affordable. The global price of palm oil
is \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/mt, coconut
oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains high

levels of unsaturated fatty acids, specifically oleic acid at oleic acid at 39.2% (Mancini et 49 al., 2015). High levels of palmitate are very beneficial for cellulolytic bacteria. 50 Cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby 51 increasing energy availability for metabolic processes. Recent findings by Sears et al. 52 (2024) showed an increase in Prevotella and Fibrobacter populations in response to 53 palmitic acid supplementation. Unsaturated fatty acids contribute to energy efficiency by 54 reducing protozoa (Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane 55 (CH4) production and the acetate/propionate (A/P) ratio by increasing propionate 56 production (Gao et al., 2016). 57

However, oil supplementation also has negative effects. Fat particles tend to coat feed particles, which hinders the adhesion of rumen microbes, especially fibrolytic microbes, thus reducing fiber digestibility (Sears et al., 2024). Rumen microbes defend against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014).

Palm oil used in animal feed must be protected to prevent biohydrogenation and to avoid disrupting rumen bacterial fermentation. It is essential to safeguard polyunsaturated fatty acids to preserve their biological roles, such as being structural components of biomembranes that uphold membrane integrity. Polyunsaturated fatty acids in biomembranes ensure membrane fluidity, which supports the activity of membrane-bound enzymes, facilitates intracellular metabolism, and enhances nutrient utilization efficiency in livestock (Pereira et al., 2022).

One effective method is saponification, which involves binding the free carboxyl groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is commonly used for this purpose (Satir et al., 2023; Vargas-bello-p et al., 2020). In

73

74

addition to Ca, NaOH can also be used to protect the oil (Wulandari et al., 2020). However, the use of Zn minerals for this purpose has not been widely explored.

Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 enzymes, and is involved in DNA synthesis, growth, CO2 transport, essential fatty acid metabolism, and protein and nucleic acid synthesis (Elamin et al., 2013). Studies in vitro observed that supplementing zinc in ruminal fluid increased cellulose digestibility (Martínez & Church, 1970), and concentrations of total volatile fatty acids (VFA) and acetate (Chen et al., 2019). Research of Wang et al. (2021) found that supplementation 20-30mg/kg DM Zn sulfat led to increase nutrient digestibility and ruminal fermentation.

In livestock, Zinc is involved in multiple biochemical functions such as bone 82 metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and 83 spermatogenesis, immune function, and appetite regulation via its effects on the central 84 nervous system (Duffy et al., 2023). The most important of Zinc are cellular respiration, 85 cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane 86 integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup 87 88 et al., 2017). The use of Zn as an oil protector has a double benefit, namely protecting 89 unsaturated fatty acids from the biohydrogenation process of rumen microbes while providing Zn needed for rumen microbes and livestock, whose needs increase in the early 90 91 stages of lactation.

In vitro Zinc soap supplementation research was conducted by Faizah et al.,
(2019), that compared between supplementation of 10% zinc soap from palm oil and 10%
corn. Supplementation with 10% of palm oil zinc soap resulted no different digestibility
of dry matter, organic matter and crude fiber, but the total production of VFA, acetate and
A/P ratio was higher compared to corn oil Zn soap. High acetate levels strongly support

97 the synthesis of milk fatty acids in dairy cows, especially short chain fatty acids. However, 98 there has been no research that explores the contribution of long chain fatty acids, MUFA 99 and PUFA due to zinc soap supplementation as a precursor for the synthesis of long fatty 100 acids and unsaturated fatty acids in milk. The results of this study was provide information 101 regarding the concentration of long chain fatty acids, MUFA and PUFA in the rumen due 102 to zinc soap supplementation, which is expected to be used as a consideration in providing 103 unsaturated fatty acids to increase production and health of dairy livestock.

This study aimed to evaluate the effects of energy and organic zinc supplement, specifically zinc palm oil soap (ZPOS), on fermentability, digestibility, and unsaturated fatty acid profiles in vitro. The benefit of this research is to identify the most efficient form of palm oil supplementation to increase energy supply and improve the profile of unsaturated fatty acids in the rumen without disrupting feed fermentability in vitro. Discovery of the most effective use of palm oil in providing an alternative solution to energy and zinc deficiencies in dairy cattle.

111

MATERIALS AND METHODS

112

Zinc Soap and Feed Preparation

113 The preparation of zinc soap was carried out according to (Cabatit, 1979). The palm oil used to make Zinc soap was a commercial palm oil which generally sold on the 114 115 market. The Zinc soap of palm oil was made based on saponification number. Palm oil is 116 measured for its saponification number and the KOH added is proportional to the saponification number. In order to protect palm oil, zinc chloride (ZnCl2) is added in an 117 118 amount equal to the KOH required to soak the oil, which is determined by the outcomes 119 of reaction stoichiometric calculations. Palm oil was put into a glass beaker and incubated in a water bath at 90°C. KOH that has been dissolved in ethanol is added to hot oil and 120

stirred until the oil is completely hydrolyzed. Next, add the ZnCl2 solution and mix continuously until a paste forms. The final step is to remove the remaining KOH by adding water and washing using a centrifuge. This process produces cream soap called Zinc soap of palm oil (ZPOS). The nutrient content of ZPOS is 24.36% ether extract, 4.2% crude fiber, 4.94% Zn and gross energy 5257 kcal/kg.

The feed consists of forage and concentrate that has been formulated for feeding lactating dairy goats with a content of crude protein (CP) 14% and total degestible nutrients (TDN) 63%. The feed was composed of corn straw, soybean hulls, rice bran, pollard, cassava waste meal, coconut meal, soybean meal and molasses. The composition of ingredients and nutrient content of the ration as shown in Table 1.

131

In Vitro Experiment

The experiment was designed using a completely randomized design with four 132 treatments and five replications. The treatments tested were T0 = basal diet without 133 supplementation, T1 = basal diet + 5% palm oil (PO), T2 = basal diet + 5% partially 134 ZPOS (3.75% ZPOS+1.25% PO), and T3 = basal diet + 5% ZPOS. Rumen liquid as a 135 136 source of inoculum was taken from three female goats with fistulas that belongs to the 137 Faculty of Animal and Agricultural Sciences Diponegoro University, and were homogenized. The goats were given a dietary trial following the ration for in vitro 138 139 substrate for one week before rumen liquid was taken. Rumen liquid was collected before morning feeding from a fistulated rumen. The rumen liquid was filtered using cheese 140 cloth and placed into a 39 °C flasks under anaerobic conditions. 141

In vitro experiments were carried out according to the method of Tilley and Terry (1963). In the fermenter tube, 0.55 grams of feed samples from each treatment were added, followed by 40 ml of McDaugall's solution and 10 ml of rumen liquid. The

145	fermentor cylinder was flowed by CO2 gas and closed to anaerobic conditions. The
146	fermentor tube was incubated in a 39°C water temperature.
147	
148	Nutrient Digestibility
149	The digestibility of nutrients including dry matter (DMD), organic matter (OMD),
150	crude protein (CPD), ether extract (EED) and crude fiber (CFD) was measured through
151	two stages of incubation, namely fermentative and enzymatic. First stage, the fermentor
152	tube was incubated in a 39°C water temperature for 2x24 hours, and process was stopped
153	by immersing the fermenter tube in ice water for 20 minutes. Then the tube was
154	centrifuged for 15 minutes at a speed of 3,000 rpm and the supernatant was discarded.
155	Second stage, the HCL pensin solution was added 50 ml into the tube and reincubated for
156	2x24 hours in a 39°C water temperature under aerobic conditions. The sample was filtered
157	with Whatman No.41 filter paper using a vacuum pump. The filter results were analyzed
158	by DM, Ash, CP, EE and C, NDF, and ADF (AOAC, 2012) to calculate nutrient
159	digestibility values. Fermentation is also carried out without feed samples called blanks.

160 Nutrien digestibility samples are calculated by the formula :

161 Nutrient Digestibility (%)

 $= \frac{(\text{Nutrient sample, g} - (\text{Nutrient residue, g} - \text{Nutrient blank, g})}{\text{nutrient sample, g}} x100$

163

162

164

pH value, VFA, NH3 and Methane production

The process of measuring pH, VFA, and NH3 followed the same procedure as that for nutrient digestibility, but with the fermentation stopped at the 4-hour mark. After centrifuging the fermentor tube at 3,000 rpm for 15 minutes, the supernatant was taken to measure the rumen pH, NH3, and total and partial VFA concentrations. A digital pH

169 meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample 170 was tested three times. NH3 levels were determined using a spectrophotometer, 171 employing a spectrophotometric method based on the catalyzed endophenol reaction to form a stable blue compound (Chaney & Marbach, 1962). Gas chromatography, as 172 reported by (Cottyn & Boucque, 1968), was used to quantify the generation of partial 173 VFAs (acetic acid, propionate, and butyrate). A mililiterl of 95-97% H₂SO₄ was 174 combined with a 10 ml incubation sample. A mililiter of the sample combination was 175 176 mixed with 0.0003 g of dehydrated sulfosalicylate. After that, the mixture was centrifuged 177 for 10 minutes at 7°C at 12,000 rpm. The samples were ready for gas chromatography

178 identification.

The methane gas concentration and energy conversion efficiency was determined by calculating the VFA stoichiometry, which was the estimation using the formula Orskov and Ryle (1990). The formula used for methane concentration were : Methane (mM) = 0.5 (% Acetate) - 0.25 (% Propionate) + 0.5 (% Butyrate). Energy conversion efficiency was calculated based on the stoichiometry of the carbohydrate fermentation reaction from hexose to VFA (acetate, propionate and butyrate). The calculation formula used was:

186
$$E(\%) = \frac{(0,622 \text{ pA} + 1,091 \text{ pP} + 1,558 \text{ pB})}{\text{pA} + \text{pP} + 2\text{pB}} x100$$

187

188

Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid

To calculate protozoa, microbial protein and fatty acid concentrations in the rumen liquid, the fermentation process was carried out for 24 hours. The populations of protozoa were calculated following the procedures of Ogimoto and Imai (1981). The solution used was methil formalin saline which was made from a mixture of 100 ml 35% formaldehyde,

193 2 g tryhan blue, 9 g NaCl and 900 ml aquades. The number of protozoa was calculated by using a microscope at magnification 100 times. Measurement of rumen liquid protein 194 195 microbes using the method of Makkar et al. (1982) on the principle of gradual centrifugation. The fatty acid profile of rumen liquid was analyzed using a gas 196 chromatograph (Model GC-14A, Shimadzu Corporation, Kyoto, Japan). Samples were 197 stored at -20°C until analysis. Following the method of Cocks and Rede (1966), the fatty 198 acid composition was determined by converting oil to fatty acid methyl esters. This 199 200 involved adding 950 µL of n-hexane, 50 mg of oil, and 50 µL of sodium methoxide. The 201 peaks of the fatty acid methyl esters were identified by comparing their retention times with those of authentic standards. The relative percentage of each fatty acid was 202 203 calculated based on its peak area relative to the total peak area of all fatty acids in the sample. Fatty acids were categorized into short-chain fatty acids (SCFA) as having fewer 204 than six carbon atoms, medium chain fatty acids (MCFA) ranging from C6 to C12, and 205 long-chain fatty acids (LCFA), which are greater than C12 (Wang et al., 2020). 206 207 **Statistical Analysis** 208 The data were analyzed using a completely randomized design in SPSS 16. 209 Duncan's Multiple Range Test with significance was set at p < 0.05 to compare treatments 210 when a significant effect was observed. 211 212 RESULTS 213 **Feed Fermentability** 214 The fermentability of feed is determined by various factors such as pH, total protozoa count, microbial protein content, NH3 concentration, and total VFA production 215 216 in rumen liquid. These parameters are detailed in Table 2. The pH levels across all

treatments fell within the normal range of 6.75-6.82. While the treatment did not significantly affect pH (p>0.05), notable differences (p<0.05) were observed in the total protozoa count, microbial protein content, total VFA, and NH3 concentrations. Palm oil supplementation had the most pronounced impact, notably reducing protozoa count and microbial protein. When zinc soap palm oil protection was partially supplemented (T2), it led to higher microbial protein and VFA production compared to feed supplemented with total zinc palm oil soap, although the difference was not significant.

224

Feed Digestibility

225 Table 3 presents the feed digestibility results from the palm oil zinc soap supplementation treatment. Statistical analysis revealed no significant differences in the 226 227 digestibility of dry matter (DMD), organic matter (OMD), and crude protein (CPD) due to the palm oil zinc soap treatment. However, there were significant differences (P<0.05) 228 in the digestibility of ether extract (EED), crude fiber (CFD), neutral detergent fiber 229 (NDFD), and acid detergent fiber (ADFD). Both non-protected and protected palm oil 230 231 increased EED. Improvements in fiber digestibility (CFD, NDFD, and ADFD) were only 232 observed with zinc soap supplementation (T2 and T3), whereas non-protected palm oil 233 showed no difference from the control. The highest fiber digestibility was achieved with partial zinc soap supplementation (T2), though it was not significantly different from the 234 235 total protection zinc soap supplementation (T3).

236

Relative Proportion of VFA

Palm oil (PO and ZPOS) supplementation significantly influenced the partial
VFA production of acetate, propionate, butyrate, the A/P ratio, and methane (P<0.05),
but did not impact the efficiency of hexose energy conversion into VFA. The relative
persentation of VFAs in this study were 59%–62% acetic acid, 24%–29% propionic acid,

and 12%–13% butyric acid. According to Duncan's Mulitiple Range Test results, both
partial (T2) and total (T3) ZSPO supplementation resulted in higher levels of acetate,
propionate, and butyrate compared to PO supplementation (T1) and the control (T0).
Conversely, PO and ZSPO supplementation produced a lower A/P ratio. The estimated
methane production also decreased with PO and ZSPO supplementation.

246

Fatty Acids in Rumen Liquid

Table 5 outlines the fatty acid composition in rumen liquid. The control diet 247 248 primarily contained short-chain fatty acids (SCFA), with a notably higher concentration 249 of C4 compared to other treatments (P<0.05). Supplementation with palm oil (PO and ZSPO) led to increased levels of palmitate (C16:0), stearate (C18:0), and oleate (C18:1) 250 251 relative to the control (P<0.05). However, the proportion of stearate was significantly lower with ZSPO supplementation (P<0.05). Unsaturated fatty acids, particularly cis-9 252 18:1, trans-11 18:1, linoleate (18:2), linolenic acid (18:3), EPA (20:5), and DHA (C22:6) 253 showed a significant increase in the 3.75% ZPOS (T2) and 5% ZSPO (T3) treatments 254 (P<0.05). 255

256 These fatty acids are classified into various categories, including short-chain fatty 257 acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs), 258 saturated fatty acids (SFAs), unsaturated fatty acids (USFAs), monounsaturated fatty 259 acids (MUFAs), and polyunsaturated fatty acids (PUFAs). According to Table 6, the 260 control diet exhibited a higher total content of SCFAs compared to the diets supplemented 261 with PO and ZSPO (P<0.05), but produced a lower amount of LCFA. SFAs showed 262 higher in control and PO suplmentation, whereas ZSPO supplementation demonstrated 263 an ability to elevate USFAs. Notably, the 3.75% ZPOS and 5% ZSPO supplementation resulted in higher levels of both MUFAs and PUFAs compared to the other treatments. 264

265

DISCUSSION

266

Feed Fermentability

267 The pH is one of the crucial factors in assessing rumen health. The findings indicated that adding palm oil and protected palm oil zinc soap did not disrupt the rumen 268 fermentation process. Similar results have been reported in other studies, such as those 269 270 conducted by Adeyemi et al. (2015), Amanullah et al. (2022), and Roy et al. (2017). The reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil, 271 272 particularly lauric acid. According to Rahman et al., (2022), palm oil typically contains 273 about 44% lauric acid (C12:0). Lauric acid is known to have antiprotozoal properties, which can potentially disrupt protozoan cell membranes and inhibit their growth (Santos 274 275 et al., 2022).

Ibrahim et al. (2021) discovered that supplementing with palm oil altered the 276 rumen microbial population in ruminants, potentially affecting their overall protein 277 synthesis capability. Sears et al. (2024) reported that oleic acid significantly reduces 278 Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids 279 280 could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting 281 in decreased protein synthesis. The use of zinc soap palm oil protection, both partially 282 (T2) and fully (T3), can mitigate the harmful effects of unsaturated fatty acids, enabling 283 microbes to develop as effectively as in the control group.

Yanza et al. (2021) found that ruminants given protected medium chain fatty acids (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to increased propionate production. Propionate is formed from the breakdown of glycerol during fat hydrolysis. The NH3 concentration in the T2 treatment was the lowest among

- all treatments, while microbial protein production was the highest. This indicates that
 NH3 is utilized for microbial protein synthesis (Getabalew & Negash, 2020).
- 291

Feed Digestibility

The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were 292 unaffected by 5% non-protected palm oil zinc soap supplementation, indicating that this 293 294 level of supplementation is safe for rumen microbial growth. These results are consistent with previous research, which found that 6% supplementation with vegetable oils (olive 295 296 oil, sunflower oil, and linseed oil) yielded OMD, NDFD, and ADFD values comparable 297 to the control, although linseed oil resulted in higher digestibility than sunflower oil (Vargas-bello-p et al., 2020). The effect of oil supplementation on digestibility is highly 298 299 dependent on the nutrient composition of the feed and the fatty acid profile of the oil. The experimental feed in this study, characterized by high fiber content and low ADF 300 (13.77%), supports the proliferation of cellulolytic microbes. A high-fiber diet may 301 mitigate the potential negative impact of oil on fiber digestion by rumen microbes 302 303 (Benchaar et al., 2015). Both non-protected (T1) and protected (T2 and T3) palm oil 304 increased EED, supporting the conclusion that palm oil can be use d as an energy 305 supplement without compromising rumen feed fermentability.

A notable finding from this research is that both partial and total zinc soap supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and ADFD. This effect is likely due to the fat and zinc content in palm oil. Palm oil contains high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki et al., 2015). Research by Sears et al. (2024) indicate an increase in Prevotella and Fibrobacter populations in response to palmitic acid supplementation. This suggests that cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby increasing

energy availability for metabolic processes. Furthermore, zinc is crucial for variousmetabolic functions in rumen microbes.

Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing 315 enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain et 316 al., 2016; Unival et al., 2017). It is indispensable for preserving the structural and 317 functional integrity of over 2000 transcription factors and 300 enzymes. It can be 318 contended that virtually all metabolic pathways are reliant, to varying degrees, on at least 319 320 one Zn-dependent protein (Ranasinghe et al., 2015). Recent research by Fellner et al. 321 (2021) elucidated that Zn supplementation precipitated increased acetate production and a heightened acetate/prothionate ratio. This delineates an augmented fiber digestion 322 323 process facilitated by cellulolytic bacteria, consequent to heightened microbial protein synthesis. This conclusion aligns with findings indicating elevated levels of microbial 324 protein compared to PO supplementation (P1), specifically 13.37 (T2) and 11.41 (T3) 325 versus 9.37 mg/ml in the P1 treatment (Table 3). 326

327

Relative Proportion of VFA

328 The relative proportion of acetate observed is slightly lower than that reported by 329 Anzhany et al. (2024), which ranged from 69% to 72%, while the proportions of propionate and butyrate are comparatively higher. According to Amanullah et al. (2022), 330 331 palm oil supplementation modifies the rumen environment, thereby altering the ratio of 332 cellulolytic to amylolytic microbes. Both partial and total ZSPO supplementation resulted in significantly higher acetate production compared to non-protected palm oil (P<0.05). 333 334 These findings are consistent with the increased microbial protein levels observed with 335 ZSPO supplementation, suggesting enhanced bacterial growth. Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 enzymes, and is involved in DNA 336

synthesis, growth, CO2 transport, essential fatty acid metabolism, and protein and nucleic
acid synthesis (Elamin et al., 2013).

The increase in propionate in the ZSPO supplementation treatment resulted from 339 the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted 340 into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated 341 fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids 342 from rumen bio-hydrogenation and increasing the duodenal flows of mono and 343 344 polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with 345 studies showing that ZSPO supplementation leads to an increase in protozoan populations (Table 4). Zinc supplementation has been associated with shifts in rumen volatile fatty 346 347 acid profiles, notably an increase in propionate and a reduction in the acetate-topropionate ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane 348 production and a lower A/P ratio are advantageous, as higher propionate levels provide a 349 350 carbon framework and synthetic energy for livestock.

351

Fatty Acids in Rumen Liquid

352 Previous research showed that oil supplementation caused a decrease in the 353 proportion of short chain fatty acids in rumen fluid, while increasing the presence of long 354 chain fatty acids. Mancini et al. (2015) argue that this transition is caused by the large 355 number of long chain fatty acids (LSFA) in palm oil, namely 98.3%, and the remaining 1.7% consists of short chain fatty acids (SCFA). Among long-chain fatty acids, which 356 357 account for 98.3% of the total, almost half (49.9%) are unsaturated fatty acids (USFA), 358 consisting of 39.2% monounsaturated fatty acids (MUFA) and 10 .5% polyunsaturated 359 fatty acids (PUFA). The prevalence of saturated fatty acids (SFA) in palm oil contributes to the range of rumen saturated fatty acid levels, where PO supplementation treatment 360

361 (T1) has higher SFA levels compared to ZPOS supplementation, namely T1 71.14%, T2
362 61.85% and T3 59.67% (Table 6).

Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities, 363 namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and 364 glycerol. Unsaturated fatty acids including oleic acid (18:1) undergo a biohydrogenation 365 process, it being converted into saturated fatty acids stearic acid (18:0) in the rumen by 366 bacteria (Buccioni et al., 2012). Harvatine et al. (2009) who tracked the biohydrogenation 367 368 process of oleic acid found that oleate in the rumen can change into trans and cis forms 369 because rumen microbes produce cis/trans isomesase enzymes, and there is an isomerase that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate) to trans 18:1. The 370 371 dominant biohydrogenation process that occurs in the rumen is bacteria hydrogenate polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 fatty acids, then 372 trans 18:1 fatty acids into stearic acid (18:0). 373

Consistent with our study's findings, supplementation with ZSPO (T2 and T3) 374 375 resulted in elevated levels of trans18:1 and cis 18:1, alongside reduced stearate (18:0) 376 concentrations compared to non-protected oil supplementation (T1). Amanullah et al. 377 (2022) conducted a comparative analysis involving corn oil, linseed oil, and Ca salt (protected C18:2n-6), revealing that protected fatty acids (Ca Salt) led to diminished 378 379 stearate levels but higher proportions of MUFA and PUFA. These findings are consistent 380 with the research by Satir et al. (2023), which demonstrated that 3% protected palm oil supplementation can increase the content of palmitic acid (SFA) and oleic acid 381 382 (MUFA).Stearate is the final product of the biohydrogenation of oleic, linoleic, and linolenic acids. This indicates a complete inhibition of the biohydrogenation process in 383 the ZSPO treatment. The protection of polyunsaturated fatty acids through saponification 384

385 involves bonding the carboxyl group with zinc, resulting in the inhibition of isomerization, which is a prerequisite for the hydrogenation of unsaturated fatty acids into 386 387 saturated fatty acids. This is reflected in the higher proportion of MUFA in the ZSPO treatment compared to PO and the control (Table 6). The substantial presence of PUFA, 388 notably EPA and DHA, underscores Zinc's role in the elongation and desaturation 389 process, facilitated by the formation of arachidonic acid (20:4) through delta-6-desaturase 390 (D6D) and delta-5-desaturase (D5D) enzymes (Ridgway, 2016). Zinc's indispensability 391 392 is further highlighted as a pivotal mineral cofactor for D6D and D5D enzymes (Noland 393 & Drisko, 2020).

Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen, particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZSPO supplementation holds potential for enhancing the quality of meat and milk fat.

- 399
- 400

CONCLUSION

Based on the results of this research, it can be concluded that zinc soap from palm
oil (ZPOS) can be developed as a source of energy and organic Zn. Its supplementation
in feed as much as 5% has beneficial effects, namely increasing fermentability, MUFA,
EPA and DHA in the rumen . It was indicated that partial suplementation of ZPOS (3.75%
ZPOS+1.25%PO) resulted in higher protozoa populations and fiber digestibility. Further
investigation is required to test the ZPOS on dairy cow in vivo.

- 407
- 408

409	CONFLICT OF INTEREST					
410	The authors declare that there is no conflict of interest with any financial, personal,					
411	or other relationships with other people or organization related to the material discussed					
412	in the manuscript.					
413						
414	ACKNOWLEDGEMENT					
415	The research was funded by Faculty of Animal and Agricultural Science,					
416	Diponegoro University.					
417						
418	REFERENCES					
419	Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A.					
420	Karsani, & A. Q. Sazili. 2015. Influence of Carotino Oil on in Vitro Rumen					
421	Fermentation, Metabolism and Apparent Biohydrogenation of Fatty Acids. Animal					
422	Science Journal. 86(3):270-78. https://doi.org/10.1111/asj.12279.					
423	Amanullah, S. M., Seong-shin Lee, D. Hand, Vi. Paradhipta, Young-hoo Joo, Dong-					
424	hyeon Kim, Pil-nam Seong, Seung-min Jeong, & Sam-churl Kim. 2022. Impact					
425	of Oil Sources on In Vitro Fermentation , Microbes , Greenhouse Gas , and Fatty					
426	Acid Profile in the Rumen. Fermentation. 8(5):242.					
427	https://doi.org/10.3390/fermentation8050242.					
428	Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid Biohydrogenation,					
429	Fermentation, and Digestibility of Ration Containing Napier and King Grass with					
430	Different Harvest Ages and Altitudes: In Vitro Study. Tropical Animal Science					
431	Journal. 47(1):68–78. https://doi.org/10.5398/tasj.2024.47.1.68.					
432	AOAC. 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical					

433 Chemists: Washington, DC.

Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil
Supplementation to Dairy Cows Fed Diets Based on Red Clover Silage or Corn
Silage: Effects on Methane Production, Rumen Fermentation, Nutrient Digestibility,
N Balance, and Milk Production. Journal of Dairy Science. 98(11):7993–8008.
https://doi.org/10.3168/jds.2015-9398.

- Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid
 Metabolism in the Rumen: New Insights on Lipolysis and Biohydrogenation with
 an Emphasis on the Role of Endogenous Plant Factors. Animal Feed Science and
 Technology. 174:1–25. https://doi.org/10.1016/j.anifeedsci.2012.02.009.
- 443 Cabatit, B. C. 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press: Manila.
- 444 Chaney, A. L., & E. P. Marbach. 1962. Modified Reagents for Determination of Urea
 445 and Ammonia. Clinical Chemistry. 8(2):130–32.
 446 https://doi.org/10.1093/clinchem/8.2.130.
- 447 Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of Zinc-Bearing
- Palygorskite on Rumen Fermentation in Vitro. Asian-Australasian Journal of
 Animal Sciences. 32(1):63–71. https://doi.org/10.5713/ajas.17.0920.
- 450 Cocks, L. V., & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis.
 451 Academic Press: London.
- 452 Cottyn, B. .., & C. V. Boucque. 1968. Rapid Method for the Gas-Chromatographic
 453 Determination of Volatile Fatty Acids in Rumen Fluid. J.Agric.Food Chem. 16:105–
 454 7. https://doi.org/10.1021/jf60155a002.
- 455 Duffy, R., M. Yin, & L. E. Redding. 2023. A Review of the Impact of Dietary Zinc on
 456 Livestock Health. Journal of Trace Elements and Minerals. 5(June):100085.

- 457 https://doi.org/10.1016/j.jtemin.2023.100085.
- 458 Elamin, K. M., N. A. Dafalla, K. A. Abdel Atti, & A. A. Tameem Eldar. 2013. Effects
- of Zinc Supplementation on Growth Performance and Some Blood Parameters of
 Goat Kids in Sudan. International Journal of Pure and Applied Biological Research
 and Sciences, 1(1):1–8.
- Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The Effect of Total or Partial
 Protected Vegetable Oil Supplementation on In Vitro Digestibility, Feed
 Fermentability and Energy Efficiency. Buletin Peternakan. 43(3):171–78.
 https://doi.org/10.21059/buletinpeternak.v43i3.43231.
- Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of Supplemental
 Zinc on Ruminal Fermentation in Continuous Cultures*. Applied Animal Science.
 37(1):27–32. https://doi.org/10.15232/aas.2020-02104.
- 469 Gao, Jian, Meng-zhi Wang, Yu-jia Jing, Xue-zhao Sun, Tian-yi Wu, & Liang-feng

470 Shi. 2016. Impacts of the Unsaturation Degree of Long-Chain Fatty Acids on the

- 471 Volatile Fatty Acid Profiles of Rumen Microbial Fermentation in Goats in Vitro.
- 472 Journal of Integrative Agriculture. 15(12):2827–33. https://doi.org/10.1016/S2095-
- 473 3119(16)61418-1.
- Getabalew, Mebrate, & Ayele Negash. 2020. Nitrogen Metabolism and Recycling in
 Ruminant Animals : A Review College of Agricultural and Natural Resources
 Science ,. Academic Journal of Nutrition. 9(3):29–38.
 https://doi.org/10.5829/idosi.ajn.2020.29.38.
- Harvatine, K. J., Y. R. Boisclair, & D. E. Bauman. 2009. Recent Advances in the
 Regulation of Milk Fat Synthesis. Animal. 3(1):40–54.
 https://doi.org/10.1017/S1751731108003133.

- Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The Role of Zinc, Manganse
 and Copper in Rumen Metabolism and Immune Function: A Review Article. Open
 Journal of Animal Sciences. 6:304–24. https://doi.org/10.4236/ojas.2016.64035.
- 484 Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, Su Chui Len Candyrine,
- 485 W. N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of
- Vegetable Oil Supplementation on Rumen Fermentation and Microbial Population
 in Ruminant: A Review. Tropical Animal Health and Production. 53(4):1–11.
 https://doi.org/10.1007/s11250-021-02863-4.
- Khaskheli, A. A., & L. Chou. 2020. Evaluation of Fatty Acids Composition,
 Metabolizable Energy, Nutrients Digestibility of Crude Palm Oil Fat Crystals in
 Turkeys. Animal Feed Science and Technology. 270(October):114734.
 https://doi.org/10.1016/j.anifeedsci.2020.114734.
- Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of
 Sunflower Oil Supplementation as Unsaturated Fatty Acid Source on Rumen
 Fermentability and Performance of Lactating Garut Ewes. Journal of the Indonesian
 Tropical Animal Agriculture. 42(3):185–93.
 https://doi.org/10.14710/jitaa.42.3.185-193.
- Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-Chemical Properties, Fatty
 Acid Profile and Nutrition in Palm Oil. Journal of Paramedical Sciences (JPS).
 6(3):117–34.
- 501 Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple
- 502 Determination of Microbial Protein in Rumen Liquor. J. Dairy Sci. 65(11):2170–73.
 503 https://doi.org/10.3168/jds.S0022-0302(82)82477-6.
- 504 Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono.

- 505 2015. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects
 506 on Health. Molecules. 20:17339–61. https://doi.org/10.3390/molecules200917339.
- Martínez, Andres, & D. C. Church. 1970. Effect of Various Mineral Rumen Cellulose
 Elements. Journal of Animal Science. 31(5):982–90.
 https://doi.org/10.2527/jas1970.315982x.
- Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of Different Vegetable Oils
 on In Vitro Ruminal Fermentability and Nutrient Digestibility in Ettawah Crossbred
 Goat. Animal Production. 21(1):22–29.
 https://doi.org/10.20884/1.jap.2019.21.1.689.
- 514 Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan.
- 515 2015. The Role of Ciliate Protozoa in the Rumen. Frontiers in Microbiology. 6:1–
 516 14. https://doi.org/10.3389/fmicb.2015.01313.
- 517 Noland, D., & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition
 518 Therapy. In edited by L. Wagner (Eds). Humana Press: Switzerland.
- 519 Ogimoto, Keiji, & Soichi Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific
 520 Societies Press.
- 521 Oliveira, André Soares. 2015. Meta-Analysis of Feeding Trials to Estimate Energy
- Requirements of Dairy Cows under Tropical Condition. Animal Feed Science and
 Technology. 210:94–103. https://doi.org/10.1016/j.anifeedsci.2015.10.006.
- 524 Orskov, E. R., & M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied
 525 Science: London (UK).
- 526 Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui
- 528 Linseed Fat to Postpartum Dairy Cows on Plasma n-3 Polyunsaturated Fatty Acid

527

J. B. Bessa, & L. Lopes-da-costa. 2022. Effects of Feeding Rumen-Protected

- 529 Concentrations and Metabolic and Reproductive Parameters. J. Dairy Sci. 105:361–
 530 74. https://doi.org/10.3168/jds.2021-20674.
- Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The Composition of Fatty
 Acids in Several Vegetable Oils from Indonesia. Biodiversitas. 23(4):2167–76.
 https://doi.org/10.13057/biodiv/d230452.
- Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P.
 Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of Zinc
 Supplementation on Serum Lipids: A Systematic Review and Meta-Analysis.
 Nutrition and Metabolism. 12(1). https://doi.org/10.1186/s12986-015-0023-4.
- 538 Ranaweera, K. K. T. N., M. B. P. K. Mahipala, & W. M. P. B. Weerasinghe. 2020.
- 539
 Evaluation of Energy Balance in Tropical and Temperate Crossbred Dairy Cows at
- 540 Post-Partum Transition Stage: A Case Study. Tropical Agricultural Research.
 541 31(2):12. https://doi.org/10.4038/tar.v31i2.8363.
- 542 Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. In edited by
 543 R.S. McLeod (Eds). Elsevier: Netherland.
- 544 Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of Different Vegetable Oils on
- Rumen Fermentation and Conjugated Linoleic Acid Concentration in Vitro.
 Veterinary World. 10(1):11–16. https://doi.org/10.14202/vetworld.2017.11-16.
- 547 Santos, Francisco A., Gabriela S. Cruz, Filipe A. Vieira, Bruno R. S. Queiroz,
- 548 Cleverson D. T. Freitas, Felipe P. Mesquita, & Pedro F. N. Souza. 2022.
- 549 Systematic Review of Antiprotozoal Potential of Antimicrobial Peptides. Acta
 550 Tropica. 236:106675. https://doi.org/10.1016/j.actatropica.2022.106675.
- Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of Adding Rumen Protected
 Palm Oil in Diet on Milk Fatty Acid Profile and Lipid Health Indices in Kivircik

- 553 Ewes. Tropical Animal Health and Production. 55:159.
 554 https://doi.org/10.1007/s11250-023-03580-w.
- 555 Sears, A., F. Hentz, J. de Souza, B. Wenner, Robert E. Ward, & F. Batistel. 2024.
- 556 Supply of Palmitic, Stearic, and Oleic Acid Changes Rumen Fiber Digestibility and
- 557 Microbial Composition. J. Dairy Sci. 107(2):902–16.
 558 https://doi.org/10.3168/jds.2023-23568.
- Shingfield, K. J., & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in
 Ruminants and Humans. Pp. 1–65 in Conjugated Linoleic Acids and Conjugated
 Vegetable Oils, In edited by B. Sels and A. Philippaerts (Eds). The Royal Society of
 Chemistry.
- Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in
 the Animal Organism: A Review. Scientia Agriculturae Bohemica. 48(1):13–21.
 https://doi.org/10.1515/sab-2017-0003.
- 566 Swain, Partha S., Somu B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016.
- Nano Zinc, an Alternative to Conventional Zinc as Animal Feed Supplement: A
 Review. Animal Nutrition. 2(3):134–41.
 https://doi.org/10.1016/j.aninu.2016.06.003.
- Tilley, J. M. A., & R. A. Terry. 1963. A Two-Stage Technique for the in Vitro Digestion
 of Forage Crops. Grass and Forage Science. 18(2):104–11.
 https://doi.org/10.1111/j.1365-2494.1963.tb00335.x.
- 573 Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P.
- 574 **Faverdin**. 2023. Genetic Relationships between Weight Loss in Early Lactation and
- 575 Daily Milk Production throughout Lactation in Holstein Cows. J. Dairy Sci.
 576 106:4799–4812. https://doi.org/10.3168/jds.2022-22813.

577	Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017.
578	Comparative Efficacy of Zinc Supplementation from Different Sources on Nutrient
579	Digestibility, Hemato-Biochemistry and Anti-Oxidant Activity in Guinea Pigs.
580	Livestock Science. 204:59-64. https://doi.org/10.1016/j.livsci.2017.08.009.

581 Vargas-bello-p, Einar, Lizbeth Esmeralda Robles-jimenez, Rafael Ayala-hern, Jose

- Romero-bernal, Nazario Pescador-salas, & Octavio Alonso. 2020. Effects of
 Calcium Soaps from Palm, Canola and Safflower Oils on Dry Matter Intake,
 Nutrient Digestibility, Milk Production, and Milk Composition in Dairy Goats.
 Animals. 10(1728). https://doi.org/10.3390/ani10101728.
- Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L.
- Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of Zinc Sulfate and Coated Zinc
 Sulfate on Lactation Performance, Nutrient Digestion and Rumen Fermentation in
 Holstein Dairy Cows. Livestock Science. 251(July 2020).
 https://doi.org/10.1016/j.livsci.2021.104673.
- Wang, Siyu, Yu Wang, Fereidoon Shahidi, & Chi-Tang Ho. 2020. Health Effects of
 Short-Chain, Medium-Chain, and Long-Chain Fatty Acids, Saturated Vs
 Unsaturated and Omega-6 Vs Omega-3 Fatty Acids and Trans Fats. Pp. 1–22 in
 Bailey's Industrial Oil and Fat Products.
- 595 Wardeh, Muhammad Fadel. 1981. "Models for Estimating Energy and Protein
 596 Utilization for Feeds: All Graduate Theses and Dissertations." Utah State University.
- World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group The
 World Bank: Washington- USA.
- Wulandari, B.P. Widyobroto, & A. Agus. 2020. In Vitro Digestibility and Ruminal
 Fermentation Profile of Pangola Grass (Digitaria Decumbens) Supplemented with

601	Crude Palm Oil Protected by Sodium Hydroxide. Livestock Research for Rural
602	Development. 32.

603 Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, Min Gao, H.

- 604 Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The Effects of Dietary
- 605 Medium-Chain Fatty Acids on Ruminal Methanogenesis and Fermentation in Vitro
- and in Vivo: A Meta-Analysis. Journal of Animal Physiology and Animal Nutrition.
- 607 105(5):874–89. https://doi.org/10.1111/jpn.13367.
- 608
- 609

	Item	Composition
	Ingredient :	
	Corn straw	33.38
	Soybean hull	12.25
	Rice bran	7.42
	Pollard	9.32
	Cassava waste meal	9,93
	Coconut meal	17.01
	Soybean meal	6.98
	Molases	3.00
	Vitamin and mineral mixture	0.80
	Nutrient composition :	
	Dry matter (DM), %	84.68
	Ash, %DM	8.63
	Crude protein, %DM	14.32
	Ether extract, %DM	4.43
	Crude fiber, %DM	20.02
	Calsium, %DM	0.33
	Phospor, %DM	0.28
	Zinc, mg/kg DM	16,93
	Neutral detergent fiber, %DM	35.51
	Acid detergent fiber, %DM	14.77
	Total digestible nutrient (TDN) ¹ , %	63.15
611	¹ Total digestible nutrients (TDN) were calculated	using TDN ($\%$ DM) = TDN =

osition of experimental diet (dry matter basis). T. I.I. 1 T 1. and alternational and

-17.2649 + 1.2120(PK) + 0.8352(BETN) + 2.4637(LK) + 0.4475(SK), according612 to (Wardeh, 1981).

- 613
- 614

615 616

617

Table 2. The pH, total protozoa, microbial protein, NH3, and total VFA production of rumen liquid due to supplementation of the zinc soap palm oil (ZPOS)

Donomoton	Treatment				SEM	. II.
Parameter	Т0	T1	T2	T3	SEM	p-Value
рН	6,76	6,75	6,73	6,82	0,018	0,224
Protozoa (10 ³ cell/ml)	98,14 ^a	32,57°	82,83 ^{ab}	69,31 ^b	0,044	0,000
Microbial protein (mg/ml)	13,01 ^a	9,37 ^b	13,37 ^a	11,41 ^{ab}	0,469	0,002
NH ³ (mM)	14,06 ^a	14,45 ^a	9,64 ^b	10,36 ^b	0,543	0,000
VFA (mM)	87,52 ^b	101,78 ^b	164,38ª	157,89ª	8,134	0,000

a,b different superscripts at the same column indicate significant differences (P<0.05). 618 T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal 619 diet+partially ZPOS(3.75% ZPOS+1.25%PO); T3= basal diet+5% ZPOS

622

623

624

⁶²⁰ 621

27	011 (ZPOS).						
	Donomaton	Treatment				SEM	- V-l.
	Parameter	T0	T1	T2	T3	SEIVI	p-Value
	Digestibility :						
	Dry matter (%)	64.06	63.82	67.20	69.24	0,850	0,054
	Organic matter (%)	69.16	65.89	69.65	69.98	0,632	0,068
	Crude protein (%)	68.69	67.99	66.39	65.11	0,569	0,100
	Ether extract (%)	88.45 ^b	94.34 ^a	93.22 ^a	92.35 ^a	0,587	0,000
	Crude fiber (%)	54.46 ^b	51.46 ^b	73.63 ^a	66.11 ^{ab}	3,057	0,020
	Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03 ^a	64.62 ^{ab}	2,830	0,006
	Acid detergent fiber (%)	45,12 ^b	44.56 ^b	65.81 ^a	53.76 ^{ab}	2,704	0,006

Table 3. Feed nutrient in vitro digestibility due to supplementation of the zinc soap palm
 oil (ZPOS).

a,b different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal

630 diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

Table 4. Fermentability of feed due to palm oil supplementation in vitro

Demonster		Treat	SEM	X7 1		
Parameter	Т0	T1	T2	Т3	SEM	p-Value
Acetate (mM)	41,17 ^b	51,10 ^a	59,31ª	65,80 ^a	2,579	0,000
Propionate (mM)	15,91°	25,41 ^b	28,73ª	29,89ª	1,348	0,000
Butyrate (mM)	8,73 ^b	10,28 ^b	12,55ª	14,20 ^a	0,546	0,000
A/P	2,59 ª	2,01 ^b	2,06 ^b	2,20 ^b	0,061	0,000
Methan (mM)	31,87ª	28,04 ^b	28,58 ^b	29,57 ^{ab}	0,489	0,014
Efficiency of energy conversion (%)	73,05	73,19	74,74	74,47	0,357	0,226

 a,b different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

Table 5. Proportion of fatty Acids in rumen liquid due supplemented of zinc soap palm Oil (ZPOS) In Vitro

Fatty Acids		Treati	SEM	p-Valu		
Taity Acids	T0	T1	T2	T3	SLIVI	p-van
		%	fat			
Short chain Fatty Acids (SCFA)						
C4	7,34 ^a	5,34 ^b	5,27 ^b	2,36 ^c	0,435	0,000
Medium chain Fatty Acids (SCFA)						
C6	<0,1	<0,1	<0,1	<0,1	-	-
C8, kaprilat	<0,1	<0,1	<0,1	<0,1	-	-
C10, kaprat	<0,1	<0,1	<0,1	<0,1	-	-
C12, laurat	1,38	1,15	1,22	1,2	0,044	0,299
Long chain Fatty Acids (LCFA)						
C13	0,3ª	0,17 ^a	<0,1 ^b	<0,1 ^b	0,030	0,000
C14, miristat	2,19	1,85	2,3	1,68	0,063	0,054
C14:1	1,00	0,5	0,57	0,44	0,072	0,053
C15,	0,51	0,75	0,36	0,33	0,056	0,055
C15:1	0,34	0,23	0,16	0,21	0,025	0,051
C16, palmitat	22,03 ^b	29,34ª	29,23ª	31,14 ^a	0,854	0,000
C16:1, n7	1,12 ^b	1,04 ^b	1,36 ab	1,5ª	0,058	0,005
C17	0,39	0,23	0,23	0,28	0,025	0,052
C17:1	<0,1	<0,1	<0,1	<0,1	-	-
C18, stearate	40,13 ^a	30,74 ^b	23,17 ^b	21,5 ^b	2,198	0,002
trans 11 C18:1	12,55°	17,84 ^b	26,16 ^a	28,05ª	1,476	0,834
cis 9 C18:1, oleat	1,09 ^b	1,43 ^b	1,99ª	1,83ª	0,099	0,000
C18:2	1,04°	1,31 ^{bc}	$1,6^{ab}$	1,86ª	0,084	0,000
C18:3	<0,1	<0,1	<0,1	<0,1	-	-
C18:3, omega 6	0,22 ^b	0,26 ^b	0,45ª	0,53ª	0,032	0,000
C18:3,gamma linolenat	0,79ª	<0,1°	0,38 ^b	0,41 ^b	0,064	0,000
C20	1,31	0,83	0,64	0,67	0,050	0,058
cis 11 C20:1	0,16 ^b	0,59ª	0,31 ^b	0,23 ^b	0,041	0,000
cis 11-14 C20:2	<0,1	<0,1	<0,1	<0,1	-	-
C20:3	<0,1	<0,1	<0,1	<0,1	-	-
C20:4, arakidonat	0,48 ^a	<0,1 ^b	<0,1 ^b	<0,1 ^b	0,048	0,000
C20:5, EPA	0,07°	0,55 ^b	0,59 ^b	0,76 ^{ab}	0,069	0,000
C21	1,38	0,31	0,2	0,26	0,017	0,000
C22, behenate	0,94ª	0,43 ^{ab}	0,23 ^b	0,25 ^b	0,042	0,050
C22:1	<0,1	<0,1	<0,1	<0,1	-	-
C22:6, DHA	3,19 ^b	4,81ª	4,57ª	4,42ª	0,159	0,000
C24	<0,1	<0,1	<0,1	<0,1	-	-
C24:1, nervonat omega 9	<0,1	<0,1	<0,1	<0,1	-	_

a,b different superscripts at the same column indicate significant differences (P<0.05).

 $T_0 = basal diet without supplementation; T_1 = basal diet+5\% palm oil; T_2 = basal$

diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

659

660

Table 6. Proportion of short chain, long chain, saturated and unsaturated fatty acids in
 rumen liquid due with supplemented of zinc soap palm Oil (ZPOS) In Vitro 661

Fatty Acids	Treatment				SEM	p-Value		
Fatty Actus	T0	T1	T2	T3	SEIVI	p-value		
	% fat							
Amount of fatty acids :								
SCFA	7,34ª	5,34 ^b	5,27 ^b	2,36°	0,453	0,000		
MCFA	1,38ª	1,15 ^b	1,22 ^b	1,2 ^b	0,028	0,009		
LCFA	91,23°	93,41 ^b	93,50 ^b	96,35ª	0,443	0,000		
SFA	77,9ª	71,14 ^b	61,85°	59,67°	1,766	0,000		
USFA	22,05°	28,76 ^b	38,14 ^a	40,24 ^a	1,722	0,000		
MUFA	16,26 ^c	21,63 ^b	30,55ª	32,26 ^a	1,531	0,000		
PUFA	5,79°	7,13 ^b	7,59ª	7,98ª	0,201	0,000		

a,b different superscripts at the same column indicate significant differences (P<0.05). 662

SA= short chain fatty acids, LA= long chain fatty acids, SFA= saturated fatty acids, 663

UFA= unsaturated fatty acids (UFA), MUFA= monounsaturated fatty acids, dan PUFA= 664 polyunsaturated fatty acids. 665

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal 666

diet+partially ZPOS (3.75% ZPOS+1.25%PO); T3= basal diet+5% ZPOS 667

668

5. Perbaikan draft publikasi atas koreksi editor

[TASJ] Revision Required of Your Manuscript

Anis Muktiani <anis.muktiani@gmail.com> To: "Prof. Dr. Komang G Wiryawan" <jurnal@apps.ipb.ac.id> Fri, Jul 26, 2024 at 2:43 PM

I hereby send a revised manuscript entitled : "Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability, Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid". Thank you for your attention. [Quoted text hidden]

2 attachments

C-C-Manuscript TASJ-56357-revised July 26.docx 120K

C-Form D_TASJ-56357 -revised July 26.doc 1097K

Tropical Animal Science

Faculty of Animal Science Building, IPB University Jln. Agatis, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: https://journal.ipb.ac.id/index.php/tasj

PAPER EVALUATION

Paper Title: Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability, Digestibility and Unsaturated Fatty Acid Profile in Rumen Liquid

Comments (please use additional paper if more space is needed)

No	Comments	Author's response
1	Generally, the authors have revised the	Thank you very much.
	manuscript following the reviewer suggestions.	
	However, the references writing need to be	I will revise it.
	revised.	
2	References	
	a) Please provide link for the references	a) Link not found, replaced with another
	below:	reference.
	Elamin, K. M., N. A. Dafalla, K. A. Abdel	Lines 75-79
	Atti, & A. A. Tameem Eldar. 2013. Effects	Lines 341-343
	of Zinc Supplementation on Growth	(written in red ink)
	Performance and Some Blood Parameters of	
	Goat Kids in Sudan. International Journal of	
	Pure and Applied Biological Research and	
	Sciences, 1(1):1–8.	
	Kaushki M. M. Nahidi & F. Charashali	Koushki, M., M. Nahidi, & F.
	Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-Chemical Properties, Fatty	Cheraghali . 2015. Physico-Chemical
	Acid Profile and Nutrition in Palm Oil.	Properties, Fatty Acid Profile and
	Journal of Paramedical Sciences (JPS).	Nutrition in Palm Oil. Journal of
	6(3):117–34.	Paramedical Sciences (JPS).6:117–34.
		https://doi.org/10.22037/jps.v6i3.9772
	Wang, Siyu, Yu Wang, Fereidoon	Wang, S., Y. Wang, F. Shahidi, &
	Shahidi, & Chi-Tang Ho. 2020. Health	C. Ho. 2020. Health Effects of
	Effects of Short-Chain, Medium-Chain, and	Short-Chain, Medium-Chain, and
	Long-Chain Fatty Acids, Saturated Vs	Long-Chain Fatty Acids, Saturated vs
	Unsaturated and Omega-6 Vs Omega-3	Unsaturated and Omega-6 vs
	Fatty Acids and Trans Fats. Pp. 1–22 in	Omega-3 Fatty Acids and Trans Fats.
	Bailey's Industrial Oil and Fat Products.	In : F. Shahidi (Ed). Bailey's Industrial Oil and Fat Products: 7 th ed.
		John Wiley & Sons, Ltd. https://doi.org/10.1002/047167849X.b
		io100.
		<u>10100</u> .

FORM D

Tropical Animal Science

Faculty of Animal Science Building, IPB University Jln. Agatis, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia E-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id Website: https://journal.ipb.ac.id/index.php/tasj

No	Comments	Author's response			
	Wulandari, B.P. Widyobroto, & A. Agus.	Wulandari, B. P. Widyobroto, & A.			
	2020. In Vitro Digestibility and Ruminal	Agus. 2020. In Vitro Digestibility and			
	Fermentation Profile of Pangola Grass	Ruminal Fermentation Profile of			
	(Digitaria Decumbens) Supplemented with	Pangola Grass (Digitaria Decumbens)			
	Crude Palm Oil Protected by Sodium	Supplemented with Crude Palm Oil			
	Hydroxide. Livestock Research for Rural	Protected by Sodium Hydroxide.			
	Development. 32.	Livestock Research for Rural			
		Development. 32.			
		https://www.lrrd.cipav.org.co/lrrd32/7 /wulan32102.html.			
		/ wuran52102.html.			
	b) Please check the writing of author's	b) Already did.			
	<i>names</i> . They must be written following on	Line 568			
	the journal's guidelines	Lines 587-588			
		Line 592			
	c) Cottyn (1968): write all authors	c) Already did.			
		Cottyn, B. G., & C. V. Boucque.			
		1968. Rapid Method for the Gas-			
		Chromatographic Determination of			
		Volatile Fatty Acids in Rumen Fluid. J.Agric.Food Chem. 16:105–7.			
		https://doi.org/10.1021/jf60155a002.			
		maps.//doi.org/10.1021/j100155a002.			

2

1

3

4

ABSTRACT

Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability and

Unsaturated Fatty Acid Profile in Rumen Liquid

5 This study aimed to evaluate the effects of energy and organic zinc supplement, specifically zinc palm oil soap (ZPOS), on fermentability, and unsaturated fatty acid 6 profiles in vitro. The study used a completely randomized design with 4 treatments and 5 7 8 replications. The treatments were: T0 (basal diet without supplementation), T1 (basal diet 9 + 5% palm oil, PO), T2 (basal diet + 5% partially ZPOS: 3.75% ZPOS + 1.25% PO), and T3 (basal diet + 5% ZPOS). The inoculum source was rumen liquid from three fistulated 10 11 female dairy goats, and were homogenized. The goats were feed on consisted of corn straw, soybean hulls, and concentrate (TDN 63%, CP 14%, NDF 35%). Results showed 12 that both partial and full ZPOS supplementation (T2 and T3) resulted in higher VFA and 13 microbial protein production, and lower NH3 levels compared to the control (P<0.05). 14 15 Partial ZPOS supplementation (T2) resulted DM, OM, and CP digestibility were similar 16 among the treatments, but digestibility of EE, CF, NDF, and ADF was significantly higher 17 than another treatment (P<0.05). ZPOS supplementation resulted higher acetate and propionate levels compared to the control and supplementation 5% palm oil (P<0.05) but 18 19 did not affect butyrate, reducing the A/P ratio and methane production. The PO treatment 20 was dominated by stearate (C18:0), whereas the ZPOS treatments showed higher levels of trans 11 C18:1, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) 21 22 compared to the control. In conclusion, adding protected palm oil in the form of zinc soap enhances fermentability, digestibility, and monounsaturated fatty acid (MUFA) content 23 in rumen liquid. 24

25 Keywords: Palm oil soap, Zinc, fermentability, unsaturated fatty acid ruminal.

26

INTRODUCTION

Early lactation dairy cows experience negative energy balance due to decreased dry matter intake (DMI). Energy requirements can be two to three times higher than the basic maintenance needs because it is used for tissue maintenance after giving birth and milk production (Khotijah et al., 2017). Energy deficiency has detrimental effects, including low production and weight loss in livestock (Tribout et al., 2023). To address this challenge, especially during early lactation, providing additional energy sources through supplements is crucial.

Energy requirements of dairy livestock in tropical regions differ from those in 34 temperate areas due to varying environmental conditions and feed resources. 35 Assessement of the energy balance of tropical and temperate crossbred dairy cows 36 revealed significant differences in serum metabolic profiles, indicating variations in 37 energy utilization and metabolism between the two regions (Ranaweera et al., 2020). 38 Meta-analysis research by Oliveira (2015) found that tropical dairy cows (Bos taurus x 39 40 Bos indicus) have lower MEm requirements and net energy efficiency for milk production is also lower than temperate dairy cattle (Bos taurus). Therefore, understanding these 41 differences is very important to optimize feeding strategies, especially energy source 42 43 supplementation in dairy livestock.

Palm oil is one of the most promising vegetable oils to be used as an energy source
with gross energy (GE) content was 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is
also easily obtainable, resistant to rancidity, and affordable. The global price of palm oil
is \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/mt, coconut
oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains high

levels of unsaturated fatty acids, specifically oleic acid at oleic acid at 39.2% (Mancini et 49 al., 2015). High levels of palmitate are very beneficial for cellulolytic bacteria. 50 Cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby 51 increasing energy availability for metabolic processes. Recent findings by Sears et al. 52 (2024) showed an increase in Prevotella and Fibrobacter populations in response to 53 palmitic acid supplementation. Unsaturated fatty acids contribute to energy efficiency by 54 reducing protozoa (Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane 55 (CH4) production and the acetate/propionate (A/P) ratio by increasing propionate 56 production (Gao et al., 2016). 57

However, oil supplementation also has negative effects. Fat particles tend to coat feed particles, which hinders the adhesion of rumen microbes, especially fibrolytic microbes, thus reducing fiber digestibility (Sears et al., 2024). Rumen microbes defend against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014).

Palm oil used in animal feed must be protected to prevent biohydrogenation and to avoid disrupting rumen bacterial fermentation. It is essential to safeguard polyunsaturated fatty acids to preserve their biological roles, such as being structural components of biomembranes that uphold membrane integrity. Polyunsaturated fatty acids in biomembranes ensure membrane fluidity, which supports the activity of membrane-bound enzymes, facilitates intracellular metabolism, and enhances nutrient utilization efficiency in livestock (Pereira et al., 2022).

One effective method is saponification, which involves binding the free carboxyl groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is commonly used for this purpose (Satir et al., 2023; Vargas-bello-p et al., 2020). In

73

74

addition to Ca, NaOH can also be used to protect the oil (Wulandari et al., 2020). However, the use of Zn minerals for this purpose has not been widely explored.

Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 75 enzymes, acts as a structural component in gene expression and signal transduction 76 (Franco et al., 2024). Zn is also a major component of metalloenzymes, lactate 77 dehydrogenase, carboxypeptidase, and DNA and RNA polymerase which play a role in 78 protein synthesis (Sloup et al., 2017). Studies in vitro observed that supplementing zinc 79 in ruminal fluid increased cellulose digestibility (Martínez & Church, 1970), and 80 concentrations of total volatile fatty acids (VFA) and acetate (Chen et al., 2019). Research 81 of Wang et al. (2021) found that supplementation 20-30mg/kg DM Zn sulfat led to 82 increase nutrient digestibility and ruminal fermentation. 83

In livestock, Zinc is involved in multiple biochemical functions such as bone 84 metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and 85 spermatogenesis, immune function, and appetite regulation via its effects on the central 86 nervous system (Duffy et al., 2023). The most important of Zinc are cellular respiration, 87 88 cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup 89 et al., 2017). The use of Zn as an oil protector has a double benefit, namely protecting 90 91 unsaturated fatty acids from the biohydrogenation process of rumen microbes while 92 providing Zn needed for rumen microbes and livestock, whose needs increase in the early stages of lactation. 93

In vitro Zinc soap supplementation research was conducted by Faizah et al.,
(2019), that compared between supplementation of 10% zinc soap from palm oil and 10%
corn. Supplementation with 10% of palm oil zinc soap resulted no different digestibility

97 of dry matter, organic matter and crude fiber, but the total production of VFA, acetate and A/P ratio was higher compared to corn oil Zn soap. High acetate levels strongly support 98 99 the synthesis of milk fatty acids in dairy cows, especially short chain fatty acids. However, there has been no research that explores the contribution of long chain fatty acids, MUFA 100 and PUFA due to zinc soap supplementation as a precursor for the synthesis of long fatty 101 102 acids and unsaturated fatty acids in milk. The results of this study was provide information regarding the concentration of long chain fatty acids, MUFA and PUFA in the rumen due 103 104 to zinc soap supplementation, which is expected to be used as a consideration in providing 105 unsaturated fatty acids to increase production and health of dairy livestock.

This study aimed to evaluate the effects of energy and organic zinc supplement, specifically zinc palm oil soap (ZPOS), on fermentability, digestibility, and unsaturated fatty acid profiles in vitro. The benefit of this research is to identify the most efficient form of palm oil supplementation to increase energy supply and improve the profile of unsaturated fatty acids in the rumen without disrupting feed fermentability in vitro. Discovery of the most effective use of palm oil in providing an alternative solution to energy and zinc deficiencies in dairy cattle.

113

114

115

MATERIALS AND METHODS

Zinc Soap and Feed Preparation

The preparation of zinc soap was carried out according to (Cabatit, 1979). The palm oil used to make Zinc soap was a commercial palm oil which generally sold on the market. The Zinc soap of palm oil was made based on saponification number. Palm oil is measured for its saponification number and the KOH added is proportional to the saponification number. In order to protect palm oil, zinc chloride (ZnCl2) is added in an

121 amount equal to the KOH required to soak the oil, which is determined by the outcomes of reaction stoichiometric calculations. Palm oil was put into a glass beaker and incubated 122 123 in a water bath at 90°C. KOH that has been dissolved in ethanol is added to hot oil and stirred until the oil is completely hydrolyzed. Next, add the ZnCl2 solution and mix 124 continuously until a paste forms. The final step is to remove the remaining KOH by 125 adding water and washing using a centrifuge. This process produces cream soap called 126 Zinc soap of palm oil (ZPOS). The nutrient content of ZPOS is 24.36% ether extract, 127 128 4.2% crude fiber, 4.94% Zn and gross energy 5257 kcal/kg.

The feed consists of forage and concentrate that has been formulated for feeding lactating dairy goats with a content of crude protein (CP) 14% and total degestible nutrients (TDN) 63%. The feed was composed of corn straw, soybean hulls, rice bran, pollard, cassava waste meal, coconut meal, soybean meal and molasses. The composition of ingredients and nutrient content of the ration as shown in Table 1.

134

In Vitro Experiment

135 The experiment was designed using a completely randomized design with four 136 treatments and five replications. The treatments tested were T0 = basal diet without supplementation, T1 = basal diet + 5% palm oil (PO), T2 = basal diet + 5% partially 137 ZPOS (3.75% ZPOS+1.25% PO), and T3 = basal diet + 5% ZPOS. Rumen liquid as a 138 139 source of inoculum was taken from three female goats with fistulas that belongs to the Faculty of Animal and Agricultural Sciences Diponegoro University, and were 140 homogenized. The goats were given a dietary trial following the ration for in vitro 141 142 substrate for one week before rumen liquid was taken. Rumen liquid was collected before 143 morning feeding from a fistulated rumen. The rumen liquid was filtered using cheese cloth and placed into a 39 °C flasks under anaerobic conditions. 144

In vitro experiments were carried out according to the method of Tilley and Terry (1963). In the fermenter tube, 0.55 grams of feed samples from each treatment were added, followed by 40 ml of McDaugall's solution and 10 ml of rumen liquid. The fermentor cylinder was flowed by CO2 gas and closed to anaerobic conditions. The fermentor tube was incubated in a 39°C water temperature.

150

Nutrient Digestibility

The digestibility of nutrients including dry matter (DMD), organic matter (OMD), 151 152 crude protein (CPD), ether extract (EED) and crude fiber (CFD) was measured through 153 two stages of incubation, namely fermentative and enzymatic. First stage, the fermentor tube was incubated in a 39°C water temperature for 2x24 hours, and process was stopped 154 155 by immersing the fermenter tube in ice water for 20 minutes. Then the tube was centrifuged for 15 minutes at a speed of 3,000 rpm and the supernatant was discarded. 156 Second stage, the HCL pensin solution was added 50 ml into the tube and reincubated for 157 2x24 hours in a 39°C water temperature under aerobic conditions. The sample was filtered 158 159 with Whatman No.41 filter paper using a vacuum pump. The filter results were analyzed 160 by DM, Ash, CP, EE and C, NDF, and ADF (AOAC, 2012) to calculate nutrient 161 digestibility values. Fermentation is also carried out without feed samples called blanks. 162 Nutrien digestibility samples are calculated by the formula :

163 Nutrient Digestibility (%)

164
$$= \frac{(\text{Nutrient sample, g} - (\text{Nutrient residue, g} - \text{Nutrient blank, g})}{\text{nutrient sample, g}} x100$$

- 165
- 166 pH value, VFA, NH3 and Methane production

167 The process of measuring pH, VFA, and NH3 followed the same procedure as that168 for nutrient digestibility, but with the fermentation stopped at the 4-hour mark. After

169 centrifuging the fermentor tube at 3,000 rpm for 15 minutes, the supernatant was taken to 170 measure the rumen pH, NH3, and total and partial VFA concentrations. A digital pH 171 meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample was tested three times. NH3 levels were determined using a spectrophotometer, 172 employing a spectrophotometric method based on the catalyzed endophenol reaction to 173 form a stable blue compound (Chaney & Marbach, 1962). Gas chromatography, as 174 reported by (Cottyn & Boucque, 1968), was used to quantify the generation of partial 175 176 VFAs (acetic acid, propionate, and butyrate). A mililiterl of 95–97% H₂SO₄ was combined with a 10 ml incubation sample. A mililiter of the sample combination was 177 mixed with 0.0003 g of dehydrated sulfosalicylate. After that, the mixture was centrifuged 178 179 for 10 minutes at 7°C at 12,000 rpm. The samples were ready for gas chromatography identification. 180

The methane gas concentration and energy conversion efficiency was determined by calculating the VFA stoichiometry, which was the estimation using the formula Orskov and Ryle (1990). The formula used for methane concentration were : Methane (mM) = 0.5 (% Acetate) - 0.25 (% Propionate) + 0.5 (% Butyrate). Energy conversion efficiency was calculated based on the stoichiometry of the carbohydrate fermentation reaction from hexose to VFA (acetate, propionate and butyrate). The calculation formula used was:

188
$$E(\%) = \frac{(0,622 \text{ pA} + 1,091 \text{ pP} + 1,558 \text{ pB})}{\text{pA} + \text{pP} + 2\text{pB}} x100$$

189

190

Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid

191 To calculate protozoa, microbial protein and fatty acid concentrations in the rumen
192 liquid, the fermentation process was carried out for 24 hours. The populations of protozoa

193 were calculated following the procedures of Ogimoto and Imai (1981). The solution used was methil formalin saline which was made from a mixture of 100 ml 35% formaldehyde, 194 195 2 g tryhan blue, 9 g NaCl and 900 ml aquades. The number of protozoa was calculated by using a microscope at magnification 100 times. Measurement of rumen liquid protein 196 microbes using the method of Makkar et al. (1982) on the principle of gradual 197 centrifugation. The fatty acid profile of rumen liquid was analyzed using a gas 198 chromatograph (Model GC-14A, Shimadzu Corporation, Kyoto, Japan). Samples were 199 200 stored at -20°C until analysis. Following the method of Cocks and Rede (1966), the fatty 201 acid composition was determined by converting oil to fatty acid methyl esters. This involved adding 950 µL of n-hexane, 50 mg of oil, and 50 µL of sodium methoxide. The 202 203 peaks of the fatty acid methyl esters were identified by comparing their retention times with those of authentic standards. The relative percentage of each fatty acid was 204 205 calculated based on its peak area relative to the total peak area of all fatty acids in the sample. Fatty acids were categorized into short-chain fatty acids (SCFA) as having fewer 206 207 than six carbon atoms, medium chain fatty acids (MCFA) ranging from C6 to C12, and 208 long-chain fatty acids (LCFA), which are greater than C12 (Wang et al., 2020). 209 **Statistical Analysis** 210 The data were analyzed using a completely randomized design in SPSS 16.

211 Duncan's Multiple Range Test with significance was set at p < 0.05 to compare treatments 212 when a significant effect was observed.

- 213
- 214
- 215
- 216

217

218

RESULTS

Feed Fermentability

219 The fermentability of feed is determined by various factors such as pH, total protozoa count, microbial protein content, NH3 concentration, and total VFA production 220 in rumen liquid. These parameters are detailed in Table 2. The pH levels across all 221 222 treatments fell within the normal range of 6.75-6.82. While the treatment did not significantly affect pH (p>0.05), notable differences (p<0.05) were observed in the total 223 224 protozoa count, microbial protein content, total VFA, and NH3 concentrations. Palm oil 225 supplementation had the most pronounced impact, notably reducing protozoa count and microbial protein. When zinc soap palm oil protection was partially supplemented (T2), 226 227 it led to higher microbial protein and VFA production compared to feed supplemented with total zinc palm oil soap, although the difference was not significant. 228

229

Feed Digestibility

230 Table 3 presents the feed digestibility results from the palm oil zinc soap 231 supplementation treatment. Statistical analysis revealed no significant differences in the 232 digestibility of dry matter (DMD), organic matter (OMD), and crude protein (CPD) due 233 to the palm oil zinc soap treatment. However, there were significant differences (P<0.05) 234 in the digestibility of ether extract (EED), crude fiber (CFD), neutral detergent fiber 235 (NDFD), and acid detergent fiber (ADFD). Both non-protected and protected palm oil increased EED. Improvements in fiber digestibility (CFD, NDFD, and ADFD) were only 236 237 observed with zinc soap supplementation (T2 and T3), whereas non-protected palm oil 238 showed no difference from the control. The highest fiber digestibility was achieved with partial zinc soap supplementation (T2), though it was not significantly different from the 239 total protection zinc soap supplementation (T3). 240

241

Relative Proportion of VFA

242	Palm oil (PO and ZPOS) supplementation significantly influenced the partial
243	VFA production of acetate, propionate, butyrate, the A/P ratio, and methane (P<0.05),
244	but did not impact the efficiency of hexose energy conversion into VFA. The relative
245	persentation of VFAs in this study were 59%-62% acetic acid, 24%-29% propionic acid,
246	and 12%-13% butyric acid. According to Duncan's Mulitiple Range Test results, both
247	partial (T2) and total (T3) ZSPO supplementation resulted in higher levels of acetate,
248	propionate, and butyrate compared to PO supplementation (T1) and the control (T0).
249	Conversely, PO and ZSPO supplementation produced a lower A/P ratio. The estimated
250	methane production also decreased with PO and ZSPO supplementation.
251	Fatty Acids in Rumen Liquid
252	Table 5 outlines the fatty acid composition in rumen liquid. The control diet
253	primarily contained short-chain fatty acids (SCFA), with a notably higher concentration
254	of C4 compared to other treatments (P<0.05). Supplementation with palm oil (PO and
255	ZSPO) led to increased levels of palmitate (C16:0), stearate (C18:0), and oleate (C18:1)
256	relative to the control (P<0.05). However, the proportion of stearate was significantly
257	lower with ZSPO supplementation (P<0.05). Unsaturated fatty acids, particularly cis-9
258	18:1, trans-11 18:1, linoleate (18:2), linolenic acid (18:3), EPA (20:5), and DHA (C22:6)
259	showed a significant increase in the 3.75% ZPOS (T2) and 5% ZSPO (T3) treatments
260	(P<0.05).
	(P<0.05). These fatty acids are classified into various categories, including short-chain fatty

acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs),
saturated fatty acids (SFAs), unsaturated fatty acids (USFAs), monounsaturated fatty
acids (MUFAs), and polyunsaturated fatty acids (PUFAs). According to Table 6, the

265	control diet exhibited a higher total content of SCFAs compared to the diets supplemented
266	with PO and ZSPO (P<0.05), but produced a lower amount of LCFA. SFAs showed
267	higher in control and PO suplmentation, whereas ZSPO supplementation demonstrated
268	an ability to elevate USFAs. Notably, the 3.75% ZPOS and 5% ZSPO supplementation
269	resulted in higher levels of both MUFAs and PUFAs compared to the other treatments.
270	
271	DISCUSSION
272	Feed Fermentability
273	The pH is one of the crucial factors in assessing rumen health. The findings
274	indicated that adding palm oil and protected palm oil zinc soap did not disrupt the rumen
275	fermentation process. Similar results have been reported in other studies, such as those
276	conducted by Adeyemi et al. (2015), Amanullah et al. (2022), and Roy et al. (2017). The
277	reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil,
278	particularly lauric acid. According to Rahman et al., (2022), palm oil typically contains
279	about 44% lauric acid (C12:0). Lauric acid is known to have antiprotozoal properties,
280	which can potentially disrupt protozoan cell membranes and inhibit their growth (Santos
281	et al., 2022).
282	Ibrahim et al. (2021) discovered that supplementing with palm oil altered the
283	rumen microbial population in ruminants, potentially affecting their overall protein

synthesis capability. Sears et al. (2024) reported that oleic acid significantly reduces
Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids
could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting
in decreased protein synthesis. The use of zinc soap palm oil protection, both partially

(T2) and fully (T3), can mitigate the harmful effects of unsaturated fatty acids, enabling
microbes to develop as effectively as in the control group.

Yanza et al. (2021) found that ruminants given protected medium chain fatty acids (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to increased propionate production. Propionate is formed from the breakdown of glycerol during fat hydrolysis. The NH3 concentration in the T2 treatment was the lowest among all treatments, while microbial protein production was the highest. This indicates that NH3 is utilized for microbial protein synthesis (Getabalew & Negash, 2020).

297

Feed Digestibility

298 The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were unaffected by 5% non-protected palm oil zinc soap supplementation, indicating that this 299 300 level of supplementation is safe for rumen microbial growth. These results are consistent with previous research, which found that 6% supplementation with vegetable oils (olive 301 302 oil, sunflower oil, and linseed oil) yielded OMD, NDFD, and ADFD values comparable 303 to the control, although linseed oil resulted in higher digestibility than sunflower oil 304 (Vargas-bello-p et al., 2020). The effect of oil supplementation on digestibility is highly 305 dependent on the nutrient composition of the feed and the fatty acid profile of the oil. The 306 experimental feed in this study, characterized by high fiber content and low ADF 307 (13.77%), supports the proliferation of cellulolytic microbes. A high-fiber diet may 308 mitigate the potential negative impact of oil on fiber digestion by rumen microbes 309 (Benchaar et al., 2015). Both non-protected (T1) and protected (T2 and T3) palm oil 310 increased EED, supporting the conclusion that palm oil can be use d as an energy supplement without compromising rumen feed fermentability. 311

312 A notable finding from this research is that both partial and total zinc soap supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and 313 ADFD. This effect is likely due to the fat and zinc content in palm oil. Palm oil contains 314 high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki et al., 2015). 315 Research by Sears et al. (2024) indicate an increase in Prevotella and Fibrobacter 316 populations in response to palmitic acid supplementation. This suggests that cellulolytic 317 bacteria can incorporate palmitic acid into their cell membranes, thereby increasing 318 319 energy availability for metabolic processes. Furthermore, zinc is crucial for various 320 metabolic functions in rumen microbes.

Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing 321 322 enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain et al., 2016; Unival et al., 2017). It is indispensable for preserving the structural and 323 functional integrity of over 2000 transcription factors and 300 enzymes. It can be 324 contended that virtually all metabolic pathways are reliant, to varying degrees, on at least 325 326 one Zn-dependent protein (Ranasinghe et al., 2015). Recent research by Fellner et al. 327 (2021) elucidated that Zn supplementation precipitated increased acetate production and 328 a heightened acetate/prothionate ratio. This delineates an augmented fiber digestion process facilitated by cellulolytic bacteria, consequent to heightened microbial protein 329 330 synthesis. This conclusion aligns with findings indicating elevated levels of microbial protein compared to PO supplementation (P1), specifically 13.37 (T2) and 11.41 (T3) 331 332 versus 9.37 mg/ml in the P1 treatment (Table 3).

333

Relative Proportion of VFA

The relative proportion of acetate observed is slightly lower than that reported by Anzhany et al. (2024), which ranged from 69% to 72%, while the proportions of

propionate and butyrate are comparatively higher. According to Amanullah et al. (2022), 336 palm oil supplementation modifies the rumen environment, thereby altering the ratio of 337 338 cellulolytic to amylolytic microbes. Both partial and total ZSPO supplementation resulted in significantly higher acetate production compared to non-protected palm oil (P<0.05). 339 340 These findings are consistent with the increased microbial protein levels observed with ZPOS supplementation, suggesting enhanced bacterial growth. Zinc (Zn) is an essential 341 trace mineral that functions as a cofactor for over 300 enzymes, including DNA and RNA 342 343 polymerase which play a role in protein synthesis (Franco et al., 2024; Sloup et al., 2017). 344 The increase in propionate in the ZSPO supplementation treatment resulted from the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted 345 346 into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids 347 from rumen bio-hydrogenation and increasing the duodenal flows of mono and 348 polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with 349 350 studies showing that ZSPO supplementation leads to an increase in protozoan populations 351 (Table 4). Zinc supplementation has been associated with shifts in rumen volatile fatty 352 acid profiles, notably an increase in propionate and a reduction in the acetate-topropionate ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane 353 354 production and a lower A/P ratio are advantageous, as higher propionate levels provide a 355 carbon framework and synthetic energy for livestock.

356

Fatty Acids in Rumen Liquid

Previous research showed that oil supplementation caused a decrease in the proportion of short chain fatty acids in rumen fluid, while increasing the presence of long chain fatty acids. Mancini et al. (2015) argue that this transition is caused by the large

360 number of long chain fatty acids (LSFA) in palm oil, namely 98.3%, and the remaining 1.7% consists of short chain fatty acids (SCFA). Among long-chain fatty acids, which 361 account for 98.3% of the total, almost half (49.9%) are unsaturated fatty acids (USFA), 362 consisting of 39.2% monounsaturated fatty acids (MUFA) and 10.5% polyunsaturated 363 fatty acids (PUFA). The prevalence of saturated fatty acids (SFA) in palm oil contributes 364 365 to the range of rumen saturated fatty acid levels, where PO supplementation treatment (T1) has higher SFA levels compared to ZPOS supplementation, namely T1 71.14%, T2 366 367 61.85% and T3 59.67% (Table 6).

Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities, 368 namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and 369 370 glycerol. Unsaturated fatty acids including oleic acid (18:1) undergo a biohydrogenation process, it being converted into saturated fatty acids stearic acid (18:0) in the rumen by 371 bacteria (Buccioni et al., 2012). Harvatine et al. (2009) who tracked the biohydrogenation 372 373 process of oleic acid found that oleate in the rumen can change into trans and cis forms 374 because rumen microbes produce cis/trans isomesase enzymes, and there is an isomerase 375 that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate) to trans 18:1. The 376 dominant biohydrogenation process that occurs in the rumen is bacteria hydrogenate 377 polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 fatty acids, then 378 trans 18:1 fatty acids into stearic acid (18:0).

Consistent with our study's findings, supplementation with ZSPO (T2 and T3) resulted in elevated levels of trans18:1 and cis 18:1, alongside reduced stearate (18:0) concentrations compared to non-protected oil supplementation (T1). Amanullah et al. (2022) conducted a comparative analysis involving corn oil, linseed oil, and Ca salt (protected C18:2n-6), revealing that protected fatty acids (Ca Salt) led to diminished

stearate levels but higher proportions of MUFA and PUFA. These findings are consistent 384 with the research by Satir et al. (2023), which demonstrated that 3% protected palm oil 385 386 supplementation can increase the content of palmitic acid (SFA) and oleic acid (MUFA).Stearate is the final product of the biohydrogenation of oleic, linoleic, and 387 linolenic acids. This indicates a complete inhibition of the biohydrogenation process in 388 the ZSPO treatment. The protection of polyunsaturated fatty acids through saponification 389 involves bonding the carboxyl group with zinc, resulting in the inhibition of 390 391 isomerization, which is a prerequisite for the hydrogenation of unsaturated fatty acids into 392 saturated fatty acids. This is reflected in the higher proportion of MUFA in the ZSPO treatment compared to PO and the control (Table 6). The substantial presence of PUFA, 393 394 notably EPA and DHA, underscores Zinc's role in the elongation and desaturation process, facilitated by the formation of arachidonic acid (20:4) through delta-6-desaturase 395 (D6D) and delta-5-desaturase (D5D) enzymes (Ridgway, 2016). Zinc's indispensability 396 397 is further highlighted as a pivotal mineral cofactor for D6D and D5D enzymes (Noland 398 & Drisko, 2020).

Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen, particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZSPO supplementation holds potential for enhancing the quality of meat and milk fat.

- 404
- 405

CONCLUSION

Based on the results of this research, it can be concluded that zinc soap from palmoil (ZPOS) can be developed as a source of energy and organic Zn. Its supplementation

408	in feed as much as 5% has beneficial effects, namely increasing fermentability, MUFA,
409	EPA and DHA in the rumen. It was indicated that partial suplementation of ZPOS (3.75%
410	ZPOS+1.25%PO) resulted in higher protozoa populations and fiber digestibility. Further
411	investigation is required to test the ZPOS on dairy cow in vivo.
412	
413	
414	CONFLICT OF INTEREST
415	The authors declare that there is no conflict of interest with any financial, personal,
416	or other relationships with other people or organization related to the material discussed
417	in the manuscript.
418	
419	ACKNOWLEDGEMENT
420	The research was funded by Faculty of Animal and Agricultural Science,
421	Diponegoro University.
422	
423	REFERENCES
424	Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A.
425	Karsani, & A. Q. Sazili. 2015. Influence of Carotino Oil on in Vitro Rumen
426	Fermentation, Metabolism and Apparent Biohydrogenation of Fatty Acids. Animal
427	Science Journal. 86:270–78. https://doi.org/10.1111/asj.12279.
428	Amanullah, S. M., S. Lee, D. Hand, Vi. Paradhipta, Y. Joo, D. Kim, P. Seong, S.
429	Jeong, & S. Kim. 2022. Impact of Oil Sources on In Vitro Fermentation, Microbes,
430	Greenhouse Gas, and Fatty Acid Profile in the Rumen. Fermentation. 8:242.
431	https://doi.org/10.3390/fermentation8050242.

- Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid Biohydrogenation,
 Fermentation, and Digestibility of Ration Containing Napier and King Grass with
 Different Harvest Ages and Altitudes : In Vitro Study. Tropical Animal Science
 Journal. 47:68–78. https://doi.org/10.5398/tasj.2024.47.1.68.
- 436 AOAC. 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical
 437 Chemists, Washington, DC.
- Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil
 Supplementation to Dairy Cows Fed Diets Based on Red Clover Silage or Corn
 Silage: Effects on Methane Production, Rumen Fermentation, Nutrient Digestibility,
 N Balance, and Milk Production. Journal of Dairy Science. 98:7993–8008.
 https://doi.org/10.3168/jds.2015-9398.
- Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid
 Metabolism in the Rumen: New Insights on Lipolysis and Biohydrogenation with
 an Emphasis on the Role of Endogenous Plant Factors. Animal Feed Science and
 Technology. 174:1–25. https://doi.org/10.1016/j.anifeedsci.2012.02.009.
- 447 **Cabatit, B. C.** 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press, Manila.
- Chaney, A. L., & E. P. Marbach. 1962. Modified Reagents for Determination of Urea
 and Ammonia. Clinical Chemistry. 8:130–32.
 https://doi.org/10.1093/clinchem/8.2.130.
- 451 Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of Zinc-Bearing
- 452 Palygorskite on Rumen Fermentation in Vitro. Asian-Australasian Journal of
- 453 Animal Sciences. 32:63–71. https://doi.org/10.5713/ajas.17.0920.
- 454 Cocks, L. V., & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis.
 455 Academic Press, London.

- 456 Cottyn, B. G., & C. V. Boucque. 1968. Rapid Method for the Gas-Chromatographic
 457 Determination of Volatile Fatty Acids in Rumen Fluid. J.Agric.Food Chem. 16:105–
 458 7. https://doi.org/10.1021/jf60155a002.
- 459 Duffy, R., M. Yin, & L. E. Redding. 2023. A Review of the Impact of Dietary Zinc on
 460 Livestock Health. Journal of Trace Elements and Minerals. 5:100085.
 461 https://doi.org/10.1016/j.jtemin.2023.100085.
- Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The Effect of Total or Partial
 Protected Vegetable Oil Supplementation on In Vitro Digestibility, Feed
 Fermentability and Energy Efficiency. Buletin Peternakan. 43:171–78.
 https://doi.org/10.21059/buletinpeternak.v43i3.43231.
- Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of Supplemental
 Zinc on Ruminal Fermentation in Continuous Cultures. Applied Animal Science.
 37:27–32. https://doi.org/10.15232/aas.2020-02104.
- 469 Franco, C. E., E. L. Rients, F. E. Diaz, S. L. Hansen, & J. L. McGill. 2024. Dietary
- Zinc Supplementation in Steers Modulates Labile Zinc Concentration and Zinc
 Transporter Gene Expression in Circulating Immune Cells. Biological Trace
 Element Research. https://doi.org/10.1007/s12011-024-04123-6.
- Gao, J., M. Wang, Y. Jing, X. Sun, T. Wu, & L. Shi. 2016. Impacts of the Unsaturation
 Degree of Long-Chain Fatty Acids on the Volatile Fatty Acid Profiles of Rumen
 Microbial Fermentation in Goats in Vitro. Journal of Integrative Agriculture.
 15:2827–33. https://doi.org/10.1016/S2095-3119(16)61418-1.
- 477 Getabalew, M., & A. Negash. 2020. Nitrogen Metabolism and Recycling in Ruminant
 478 Animals: A Review College of Agricultural and Natural Resources Science ,.
 479 Academic Journal of Nutrition. 9:29–38.

- 480 https://doi.org/10.5829/idosi.ajn.2020.29.38.
- Harvatine, K. J., Y. R. Boisclair, & D. E. Bauman. 2009. Recent Advances in the
 Regulation of Milk Fat Synthesis. Animal. 3:40–54.
 https://doi.org/10.1017/S1751731108003133.
- 484 Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The Role of Zinc, Manganse
- and Copper in Rumen Metabolism and Immune Function: A Review Article. Open
 Journal of Animal Sciences. 6:304–24. https://doi.org/10.4236/ojas.2016.64035.
- 487 Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, S. C. L. Candyrine, W.
- N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of
 Vegetable Oil Supplementation on Rumen Fermentation and Microbial Population
 in Ruminant: A Review. Tropical Animal Health and Production. 53:1–11.
 https://doi.org/10.1007/s11250-021-02863-4.
- Khaskheli, A. A., & L. Chou. 2020. Evaluation of Fatty Acids Composition,
 Metabolizable Energy, Nutrients Digestibility of Crude Palm Oil Fat Crystals in
 Turkeys. Animal Feed Science and Technology. 270:114734.
 https://doi.org/10.1016/j.anifeedsci.2020.114734.
- Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of
 Sunflower Oil Supplementation as Unsaturated Fatty Acid Source on Rumen
 Fermentability and Performance of Lactating Garut Ewes. Journal of the Indonesian
 Tropical Animal Agriculture. 42:185–93. https://doi.org/10.14710/jitaa.42.3.185193.
- Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-Chemical Properties, Fatty
 Acid Profile and Nutrition in Palm Oil. Journal of Paramedical Sciences (JPS).
 6:117–34. https://doi.org/10.22037/jps.v6i3.9772.

- Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple
 Determination of Microbial Protein in Rumen Liquor. J. Dairy Sci. 65:2170–73.
 https://doi.org/10.3168/jds.S0022-0302(82)82477-6.
- 507 Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono.
- 508 2015. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects
 509 on Health. Molecules. 20:17339–61. https://doi.org/10.3390/molecules200917339.
- Martínez, A., & D. C. Church. 1970. Effect of Various Mineral Rumen Cellulose
 Elements. Journal of Animal Science. 31:982–90.
 https://doi.org/10.2527/jas1970.315982x.
- Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of Different Vegetable Oils
 on In Vitro Ruminal Fermentability and Nutrient Digestibility in Ettawah Crossbred
 Goat. Animal Production. 21:22–29. https://doi.org/10.20884/1.jap.2019.21.1.689.
- 516 Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan.
- 517 2015. The Role of Ciliate Protozoa in the Rumen. Frontiers in Microbiology. 6:1–
- 518 14. https://doi.org/10.3389/fmicb.2015.01313.
- Noland, D., & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition
 Therapy. In : L. Wagner (Eds). Humana Press, Switzerland.
- 521 Ogimoto, K., & S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Societies
 522 Press, Tokyo.
- 523 Oliveira, A. S. 2015. Meta-Analysis of Feeding Trials to Estimate Energy Requirements
- of Dairy Cows under Tropical Condition. Animal Feed Science and Technology.
- 525 210:94–103. https://doi.org/10.1016/j.anifeedsci.2015.10.006.
- 526 Orskov, E. R., & M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied
 527 Science, London (UK).

528	Pereira, G	L. P. Simões.	R. Bexiga, E	. Silva, L. Mateus	. T. Fernandes	. S. P. Alves, Ru
JZ0	I CI CII a, U	J., I DIIIUUS,	IN. DUNIga, L	· Dirva, L. Mattus	, I. I'thanuts	, D. I . AIVCS, NU

- J. B. Bessa, & L. Lopes-da-costa. 2022. Effects of Feeding Rumen-Protected
- Linseed Fat to Postpartum Dairy Cows on Plasma n-3 Polyunsaturated Fatty Acid
 Concentrations and Metabolic and Reproductive Parameters. J. Dairy Sci. 105:361–
- 532 74. https://doi.org/10.3168/jds.2021-20674.
- Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The Composition of Fatty
 Acids in Several Vegetable Oils from Indonesia. Biodiversitas. 23:2167–76.
 https://doi.org/10.13057/biodiv/d230452.
- 536 Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P.
- Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of Zinc
 Supplementation on Serum Lipids: A Systematic Review and Meta-Analysis.
 Nutrition and Metabolism. 12. https://doi.org/10.1186/s12986-015-0023-4.

540 Ranaweera, K. K. T. N., M. B. P. K. Mahipala, & W. M. P. B. Weerasinghe. 2020.

- 541 Evaluation of Energy Balance in Tropical and Temperate Crossbred Dairy Cows at
- 542 Post-Partum Transition Stage: A Case Study. Tropical Agricultural Research.
 543 31(2):12. https://doi.org/10.4038/tar.v31i2.8363.
- 544 Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. In R.S.
 545 McLeod (Eds). Elsevier, Netherland.
- **Roy, A., G. P. Mandal, & A. K. Patra**. 2017. Effects of Different Vegetable Oils on
 Rumen Fermentation and Conjugated Linoleic Acid Concentration in Vitro.
 Veterinary World. 10:11–16. https://doi.org/10.14202/vetworld.2017.11-16.
- 549 Santos, F. A., G. S. Cruz, F. A. Vieira, B. R. S. Queiroz, C. D. T. Freitas, F. P.
- 550 Mesquita, & P. F. N. Souza. 2022. Systematic Review of Antiprotozoal Potential
- 551 of Antimicrobial Peptides. Acta Tropica. 236:106675.

- 552 https://doi.org/10.1016/j.actatropica.2022.106675.
- Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of Adding Rumen Protected
 Palm Oil in Diet on Milk Fatty Acid Profile and Lipid Health Indices in Kivircik
 Ewes. Tropical Animal Health and Production. 55:159.
 https://doi.org/10.1007/s11250-023-03580-w.
- Sears, A., F. Hentz, J. de Souza, B. Wenner, Robert E. Ward, & F. Batistel. 2024.
 Supply of Palmitic, Stearic, and Oleic Acid Changes Rumen Fiber Digestibility and
 Microbial Composition. J. Dairy Sci. 107:902–16. https://doi.org/10.3168/jds.202323568.
- Shingfield, K. J., & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in
 Ruminants and Humans. In : B. Sels and A. Philippaerts (Eds). Conjugated Linoleic
 Acids and Conjugated Vegetable Oils. The Royal Society of Chemistry.
 https://doi.org/10.1039/9781782620211-00001.
- 565 Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in
- the Animal Organism: A Review. Scientia Agriculturae Bohemica. 48:13–21.
 https://doi.org/10.1515/sab-2017-0003.
- 568 Swain, P. S., S. B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016. Nano
- Zinc, an Alternative to Conventional Zinc as Animal Feed Supplement: A Review.
 Animal Nutrition. 2:134–41. https://doi.org/10.1016/j.aninu.2016.06.003.
- 571 Tilley, J. M. A., & R. A. Terry. 1963. A Two-Stage Technique for the in Vitro Digestion
- 572 of Forage Crops. Grass and Forage Science. 18:104–11.
 573 https://doi.org/10.1111/j.1365-2494.1963.tb00335.x.
- 574 Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P.
- 575 Faverdin. 2023. Genetic Relationships between Weight Loss in Early Lactation and

576 Daily Milk Production throughout Lactation in Holstein Cows. J. Dairy Sci.
577 106:4799–4812. https://doi.org/10.3168/jds.2022-22813.

Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017.
Comparative Efficacy of Zinc Supplementation from Different Sources on Nutrient
Digestibility, Hemato-Biochemistry and Anti-Oxidant Activity in Guinea Pigs.

581 Livestock Science. 204:59–64. https://doi.org/10.1016/j.livsci.2017.08.009.

582 Vargas-bello-p, E., L. E. Robles-jimenez, R. Ayala-hern, J. Romero-bernal, N.

Pescador-salas, & O. Alonso. 2020. Effects of Calcium Soaps from Palm, Canola
and Safflower Oils on Dry Matter Intake, Nutrient Digestibility, Milk Production,
and Milk Composition in Dairy Goats. Animals. 10.
https://doi.org/10.3390/ani10101728.

587 Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L.

Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of Zinc Sulfate and Coated Zinc
Sulfate on Lactation Performance, Nutrient Digestion and Rumen Fermentation in
Holstein Dairy Cows. Livestock Science. 251.
https://doi.org/10.1016/j.livsci.2021.104673.

Wang, S., Y. Wang, F. Shahidi, & C. Ho. 2020. Health Effects of Short-Chain, Medium-592 Chain, and Long-Chain Fatty Acids, Saturated vs Unsaturated and Omega-6 vs 593 Omega-3 Fatty Acids and Trans Fats. In : F. Shahidi (Ed). Bailey's Industrial Oil 594 7th Products: 595 and Fat ed. John Wiley & Sons, Ltd. 596 https://doi.org/10.1002/047167849X.bio100.

Wardeh, Muhammad Fadel. 1981. "Models for Estimating Energy and Protein
Utilization for Feeds: All Graduate Theses and Dissertations." Utah State University.
World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group - The

600 World Bank, Washington, USA.

Wulandari, B. P. Widyobroto, & A. Agus. 2020. In Vitro Digestibility and Ruminal
 Fermentation Profile of Pangola Grass (Digitaria Decumbens) Supplemented with
 Crude Palm Oil Protected by Sodium Hydroxide. Livestock Research for Rural
 Development. 32. https://www.lrrd.cipav.org.co/lrrd32/7/wulan32102.html.

- 605 Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, M. Gao, H.
- 606 Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The Effects of Dietary
- 607 Medium-Chain Fatty Acids on Ruminal Methanogenesis and Fermentation in Vitro
- and in Vivo: A Meta-Analysis. Journal of Animal Physiology and Animal Nutrition.
- 609 105:874–89. https://doi.org/10.1111/jpn.13367.

Item	Composition
Ingredient :	
Corn straw	33.38
Soybean hull	12.25
Rice bran	7.42
Pollard	9.32
Cassava waste meal	9,93
Coconut meal	17.01
Soybean meal	6.98
Molases	3.00
Vitamin and mineral mixture	0.80
Nutrient composition :	
Dry matter (DM), %	84.68
Ash, %DM	8.63
Crude protein, %DM	14.32
Ether extract, %DM	4.43
Crude fiber, %DM	20.02
Calsium, %DM	0.33
Phospor, %DM	0.28
Zinc, mg/kg DM	16,93
Neutral detergent fiber, %DN	M 35.51
Acid detergent fiber, %DM	14.77
Total digestible nutrient (TD	$(N)^{1}, \%$ 63.15
¹ Total digestible nutrients (TDN)	were calculated using TDN $(\%DM) = TDN =$

essition of experimental diet (dry matter basis). - ---- hamizal aom T. I.I. 1 T 1.

-17.2649 + 1.2120(PK) + 0.8352(BETN) + 2.4637(LK) + 0.4475(SK), according613 to (Wardeh, 1981). 614

615

616

617

Table 2. The pH, total protozoa, microbial protein, NH3, and total VFA production of rumen liquid due to supplementation of the zinc soap palm oil (ZPOS) 618

Donomoton	Treatment				SEM	. V.L.	
Parameter	Т0	T1	T2	T3	SEM	p-Value	
рН	6,76	6,75	6,73	6,82	0,018	0,224	
Protozoa (10 ³ cell/ml)	98,14 ^a	32,57°	82,83 ^{ab}	69,31 ^b	0,044	0,000	
Microbial protein (mg/ml)	13,01 ^a	9,37 ^b	13,37 ^a	11,41 ^{ab}	0,469	0,002	
NH ³ (mM)	14,06 ^a	14,45 ^a	9,64 ^b	10,36 ^b	0,543	0,000	
VFA (mM)	87,52 ^b	101,78 ^b	164,38ª	157,89ª	8,134	0,000	

^{a,b} different superscripts at the same column indicate significant differences (P<0.05). 619 T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal 620 diet+partially ZPOS(3.75% ZPOS+1.25%PO); T3= basal diet+5% ZPOS 621

622

623

624

625

628	oil (ZPOS).						
	Donomator		Trea	SEM	. V.L.		
	Parameter	T0	T1	T2	T3	SLIVI	p-Value
	Digestibility :						
	Dry matter (%)	64.06	63.82	67.20	69.24	0,850	0,054
	Organic matter (%)	69.16	65.89	69.65	69.98	0,632	0,068
	Crude protein (%)	68.69	67.99	66.39	65.11	0,569	0,100
	Ether extract (%)	88.45 ^b	94.34 ^a	93.22 ^a	92.35 ^a	0,587	0,000
	Crude fiber (%)	54.46 ^b	51.46 ^b	73.63 ^a	66.11 ^{ab}	3,057	0,020
	Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03 ^a	64.62 ^{ab}	2,830	0,006
	Acid detergent fiber (%)	45,12 ^b	44.56 ^b	65.81 ^a	53.76 ^{ab}	2,704	0,006

Table 3. Feed nutrient in vitro digestibility due to supplementation of the zinc soap palm
 oil (ZPOS).

a,b different superscripts at the same column indicate significant differences (P<0.05).

630 T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal

diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

Table 4. Fermentability of feed due to palm oil supplementation in vitro

Demonster		Treat	CEM	X7 1		
Parameter	Т0	T1	T2	Т3	SEM	p-Value
Acetate (mM)	41,17 ^b	51,10 ^a	59,31ª	65,80 ^a	2,579	0,000
Propionate (mM)	15,91°	25,41 ^b	28,73ª	29,89ª	1,348	0,000
Butyrate (mM)	8,73 ^b	10,28 ^b	12,55ª	14,20 ^a	0,546	0,000
A/P	2,59 ª	2,01 ^b	2,06 ^b	2,20 ^b	0,061	0,000
Methan (mM)	31,87ª	28,04 ^b	28,58 ^b	29,57 ^{ab}	0,489	0,014
Efficiency of energy conversion (%)	73,05	73,19	74,74	74,47	0,357	0,226

 a,b different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

Table 5. Proportion of fatty Acids in rumen liquid due supplemented of zinc soap palm Oil (ZPOS) In Vitro

Fatty Acids		Treati	SEM	p-Valu		
Tatty Aclus	T0	T1	T2	T3	SLIVI	p-vaiu
		%	fat			
Short chain Fatty Acids (SCFA)						
C4	7,34 ^a	5,34 ^b	5,27 ^b	2,36 ^c	0,435	0,000
Medium chain Fatty Acids (SCFA)						
C6	<0,1	<0,1	<0,1	<0,1	-	
C8, kaprilat	<0,1	<0,1	<0,1	<0,1	-	-
C10, kaprat	<0,1	<0,1	<0,1	<0,1	-	-
C12, laurat	1,38	1,15	1,22	1,2	0,044	0,299
Long chain Fatty Acids (LCFA)						
C13	0,3ª	0,17 ^a	<0,1 ^b	<0,1 ^b	0,030	0,000
C14, miristat	2,19	1,85	2,3	1,68	0,063	0,054
C14:1	1,00	0,5	0,57	0,44	0,072	0,053
C15,	0,51	0,75	0,36	0,33	0,056	0,055
C15:1	0,34	0,23	0,16	0,21	0,025	0,05
C16, palmitat	22,03 ^b	29,34ª	29,23ª	31,14 ^a	0,854	0,000
C16:1, n7	1,12 ^b	1,04 ^b	1,36 ^{ab}	1,5ª	0,058	0,00
C17	0,39	0,23	0,23	0,28	0,025	0,052
C17:1	<0,1	<0,1	<0,1	<0,1	-	-
C18, stearate	40,13 ^a	30,74 ^b	23,17 ^b	21,5 ^b	2,198	0,002
trans 11 C18:1	12,55°	17,84 ^b	26,16 ^a	28,05 ^a	1,476	0,834
cis 9 C18:1, oleat	1,09 ^b	1,43 ^b	1,99ª	1,83ª	0,099	0,00
C18:2	1,04°	1,31 ^{bc}	$1,6^{ab}$	1,86ª	0,084	0,000
C18:3	<0,1	<0,1	<0,1	<0,1	_	_
C18:3, omega 6	0,22 ^b	0,26 ^b	0,45ª	0,53ª	0,032	0,000
C18:3,gamma linolenat	0,79 ^a	<0,1°	0,38 ^b	0,41 ^b	0,064	0,000
C20	1,31	0,83	0,64	0,67	0,050	0,058
cis 11 C20:1	0,16 ^b	0,59ª	0,31 ^b	0,23 ^b	0,041	0,000
cis 11-14 C20:2	<0,1	<0,1	<0,1	<0,1	-	-
C20:3	<0,1	<0,1	<0,1	<0,1	-	-
C20:4, arakidonat	$0,48^{a}$	<0,1 ^b	<0,1 ^b	<0,1 ^b	0,048	0,000
C20:5, EPA	0,07°	0,55 ^b	0,59 ^b	0,76 ^{ab}	0,069	0,000
C21	1,38	0,31	0,2	0,26	0,017	0,000
C22, behenate	0,94ª	0,43 ^{ab}	0,23 ^b	0,25 ^b	0,042	0,050
C22:1	<0,1	<0,1	<0,1	<0,1	-	-
C22:6, DHA	3,19 ^b	4,81 ^a	4,57ª	4,42ª	0,159	0,000
C24	<0,1	<0,1	<0,1	<0,1	_	-
C24:1, nervonat omega 9	<0,1	<0,1	<0,1	<0,1	_	-

a,b different superscripts at the same column indicate significant differences (P<0.05).

 $T_0 = basal diet without supplementation; T_1 = basal diet+5\% palm oil; T_2 = basal$

diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

660

661

Table 6. Proportion of short chain, long chain, saturated and unsaturated fatty acids in
 rumen liquid due with supplemented of zinc soap palm Oil (ZPOS) In Vitro 662

Fotty Agida		Trea	SEM	n Value		
Fatty Acids	T0	T1	T2	T3	SEIVI	p-Value
		%	6 fat			
Amount of fatty acids :						
SCFA	7,34 ^a	5,34 ^b	5,27 ^b	2,36°	0,453	0,000
MCFA	1,38ª	1,15 ^b	1,22 ^b	1,2 ^b	0,028	0,009
LCFA	91,23°	93,41 ^b	93,50 ^b	96,35ª	0,443	0,000
SFA	77,9ª	71,14 ^b	61,85°	59,67°	1,766	0,000
USFA	22,05°	28,76 ^b	38,14 ^a	40,24 ^a	1,722	0,000
MUFA	16,26 ^c	21,63 ^b	30,55ª	32,26 ^a	1,531	0,000
PUFA	5,79°	7,13 ^b	7,59ª	7,98ª	0,201	0,000

a,b different superscripts at the same column indicate significant differences (P<0.05). 663

SA= short chain fatty acids, LA= long chain fatty acids, SFA= saturated fatty acids, 664

UFA= unsaturated fatty acids (UFA), MUFA= monounsaturated fatty acids, dan PUFA= 665 polyunsaturated fatty acids. 666

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal 667

diet+partially ZPOS (3.75% ZPOS+1.25%PO); T3= basal diet+5% ZPOS 668

Anis Muktiani <anis.muktiani@gmail.com>

[TASJ] Editor Decision

Prof. Dr. Komang G Wiryawan <jurnal@apps.ipb.ac.id>

Mon, Jul 29, 2024 at 8:59 AM To: "A. Muktiani" <anismuktiani@gmail.com>, "W. Widiyanto" <widiyanto@lecturer.undip.ac.id>, "N. S. Pandupuspitasari" <shin tse@yahoo.com>

Bogor, July 29, 2024

Dear A. Muktiani, W. Widiyanto, N. S. Pandupuspitasari:

I am pleased to inform you that your article submitted to Tropical Animal Science Journal, entitled "Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability and Unsaturated Fatty Acid Profile in Rumen Liquid" has been accepted for publication in this journal. We will send you the COPYEDITING of your manuscript as we will ask you for some corrections of the typesetting.

Please find the attached invoice of the publication charge of your manuscript.

Thank you for your article submission, and we are looking forward to receiving your incoming articles.

Prof. Dr. Komang G Wiryawan Chief Editor **Tropical Animal Science Journal** kgwiryawan@yahoo.com

Tropical Animal Science

Journal http://journal.ipb.ac.id/index.php/tasj

3 attachments

C-INVOICE INV-24035.pdf 63K

C-Acceptance Letter_TASJ-56357.pdf 56K

C-Manuscript TASJ-56357_Revised by Author_2.docx W 112K

Tropical Animal Science

Faculty of Animal Science Building, IPB University Jln. Agatis, Kampus IPB Darmaga, Bogor 16680, West Java, Indonesia E-mail: mediapeternakan@apps.ipb.ac.id Website: https://journal.ipb.ac.id/index.php/tasj

Bogor, July 29, 2024

Dear A. Muktiani, W. Widiyanto, N. S. Pandupuspitasari:

I am pleased to inform you that your article submitted to Tropical Animal Science Journal, entitled "Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability and Unsaturated Fatty Acid Profile in Rumen Liquid" has been accepted for publication in this journal. We will send you the COPYEDITING of your manuscript as we will ask you for some corrections of the typesetting.

Please find the attached invoice of the publication charge of your manuscript.

Thank you for your article submission, and we are looking forward to receiving your incoming articles.

Prof. Dr. Komang G Wiryawan Chief Editor Tropical Animal Science Journal kgwiryawan@yahoo.com

[TASJ] Editor Decision

Anis Muktiani <anis.muktiani@gmail.com> To: "Prof. Dr. Komang G Wiryawan" <jurnal@apps.ipb.ac.id> Tue, Jul 30, 2024 at 11:11 AM

I hereby send the manuscript, entitled "Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability and Unsaturated Fatty Acid Profile in Rumen Liquid" which has been corrected for typos. I also sent proof of payment of the invoice. Thank you.

Anis Muktiani [Quoted text hidden]

2 attachments

Proof of invoice payment - Anis Muktiani.jpeg

C-Manuscript TASJ-56357_corection typing_July 30.docx

1	Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability and
2	Unsaturated Fatty Acid Profile in Rumen Liquid
3	
4	A. Muktiani*, W. Widiyanto, & N. S. Pandupuspitasari
5	Faculty of Animal and Agricultural Science, Diponegoro University
6	Jalan Prof. Jacup Rais, Kampus Universitas Diponegoro, Semarang 65145, Indonesia
7	*Corresponding author: anismuktiani@lecturer.undip.ac.id
8	
9	ABSTRACT
10	This study aimed to evaluate the effects of energy and organic zinc supplement,
11	specifically zinc palm oil soap (ZPOS), on fermentability, and unsaturated fatty acid
12	profiles in vitro. The study used a completely randomized design with 4 treatments and 5
13	replications. The treatments were: T0 (basal diet without supplementation), T1 (basal diet
14	+ 5% palm oil, PO), T2 (basal diet + 5% partially ZPOS: 3.75% ZPOS + 1.25% PO), and
15	T3 (basal diet + 5% ZPOS). The inoculum source was rumen liquid from three fistulated
16	female dairy goats, and were homogenized. The goats were feed on consisted of corn
17	straw, soybean hulls, and concentrate (TDN 63%, CP 14%, NDF 35%). Results showed
18	that both partial and full ZPOS supplementation (T2 and T3) resulted in higher VFA and
19	microbial protein production, and lower NH3 levels compared to the control (P<0.05).
20	Partial ZPOS supplementation (T2) resulted DM, OM, and CP digestibility were similar
21	among the treatments, but digestibility of EE, CF, NDF, and ADF was significantly higher
22	than another treatment (P<0.05). ZPOS supplementation resulted higher acetate and
23	propionate levels compared to the control and supplementation 5% palm oil (P<0.05) but
24	did not affect butyrate, reducing the A/P ratio and methane production. The PO treatment

25	was dominated by stearate (C18:0), whereas the ZPOS treatments showed higher levels
26	of trans 11 C18:1, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)
27	compared to the control. In conclusion, adding protected palm oil in the form of zinc soap
28	enhances fermentability, digestibility, and monounsaturated fatty acid (MUFA) content
29	in rumen liquid.
30	Keywords: Palm oil soap, Zinc, fermentability, unsaturated fatty acid ruminal.
31	
32	INTRODUCTION
33	Early lactation dairy cows experience negative energy balance due to decreased

dry matter intake (DMI). Energy requirements can be two to three times higher than the basic maintenance needs because it is used for tissue maintenance after giving birth and milk production (Khotijah et al., 2017). Energy deficiency has detrimental effects, including low production and weight loss in livestock (Tribout et al., 2023). To address this challenge, especially during early lactation, providing additional energy sources through supplements is crucial.

40 Energy requirements of dairy livestock in tropical regions differ from those in temperate areas due to varying environmental conditions and feed resources. 41 Assessement of the energy balance of tropical and temperate crossbred dairy cows 42 43 revealed significant differences in serum metabolic profiles, indicating variations in 44 energy utilization and metabolism between the two regions (Ranaweera et al., 2020). 45 Meta-analysis research by Oliveira (2015) found that tropical dairy cows (Bos taurus x Bos indicus) have lower MEm requirements and net energy efficiency for milk production 46 is also lower than temperate dairy cattle (Bos taurus). Therefore, understanding these 47

48 differences is very important to optimize feeding strategies, especially energy source49 supplementation in dairy livestock.

Palm oil is one of the most promising vegetable oils to be used as an energy source 50 with gross energy (GE) content was 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is 51 also easily obtainable, resistant to rancidity, and affordable. The global price of palm oil 52 is \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/mt, coconut 53 oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains high 54 55 levels of unsaturated fatty acids, specifically oleic acid at oleic acid at 39.2% (Mancini et al., 2015). High levels of palmitate are very beneficial for cellulolytic bacteria. 56 Cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby 57 increasing energy availability for metabolic processes. Recent findings by Sears et al. 58 (2024) showed an increase in Prevotella and Fibrobacter populations in response to 59 palmitic acid supplementation. Unsaturated fatty acids contribute to energy efficiency by 60 reducing protozoa (Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane 61 (CH4) production and the acetate/propionate (A/P) ratio by increasing propionate 62 production (Gao et al., 2016). 63

However, oil supplementation also has negative effects. Fat particles tend to coat
feed particles, which hinders the adhesion of rumen microbes, especially fibrolytic
microbes, thus reducing fiber digestibility (Sears et al., 2024). Rumen microbes defend
against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty
acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014).

Palm oil used in animal feed must be protected to prevent biohydrogenation and
to avoid disrupting rumen bacterial fermentation. It is essential to safeguard
polyunsaturated fatty acids to preserve their biological roles, such as being structural

72 components of biomembranes that uphold membrane integrity. Polyunsaturated fatty 73 acids in biomembranes ensure membrane fluidity, which supports the activity of 74 membrane-bound enzymes, facilitates intracellular metabolism, and enhances nutrient 75 utilization efficiency in livestock (Pereira et al., 2022).

One effective method is saponification, which involves binding the free carboxyl groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is commonly used for this purpose (Satir et al., 2023; Vargas-bello-p et al., 2020). In addition to Ca, NaOH can also be used to protect the oil (Wulandari et al., 2020). However, the use of Zn minerals for this purpose has not been widely explored.

Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 81 enzymes, acts as a structural component in gene expression and signal transduction 82 (Franco et al., 2024). Zn is also a major component of metalloenzymes, lactate 83 dehydrogenase, carboxypeptidase, and DNA and RNA polymerase which play a role in 84 protein synthesis (Sloup et al., 2017). Studies in vitro observed that supplementing zinc 85 in ruminal fluid increased cellulose digestibility (Martínez & Church, 1970), and 86 87 concentrations of total volatile fatty acids (VFA) and acetate (Chen et al., 2019). Research of Wang et al. (2021) found that supplementation 20-30mg/kg DM Zn sulfat led to 88 increase nutrient digestibility and ruminal fermentation. 89

In livestock, Zinc is involved in multiple biochemical functions such as bone metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and spermatogenesis, immune function, and appetite regulation via its effects on the central nervous system (Duffy et al., 2023). The most important of Zinc are cellular respiration, cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup

et al., 2017). The use of Zn as an oil protector has a double benefit, namely protecting
unsaturated fatty acids from the biohydrogenation process of rumen microbes while
providing Zn needed for rumen microbes and livestock, whose needs increase in the early
stages of lactation.

100 In vitro Zinc soap supplementation research was conducted by Faizah et al., (2019), that compared between supplementation of 10% zinc soap from palm oil and 10% 101 corn. Supplementation with 10% of palm oil zinc soap resulted no different digestibility 102 103 of dry matter, organic matter and crude fiber, but the total production of VFA, acetate and 104 A/P ratio was higher compared to corn oil Zn soap. High acetate levels strongly support the synthesis of milk fatty acids in dairy cows, especially short chain fatty acids. However, 105 106 there has been no research that explores the contribution of long chain fatty acids, MUFA and PUFA due to zinc soap supplementation as a precursor for the synthesis of long fatty 107 acids and unsaturated fatty acids in milk. The results of this study was provide information 108 regarding the concentration of long chain fatty acids, MUFA and PUFA in the rumen due 109 110 to zinc soap supplementation, which is expected to be used as a consideration in providing 111 unsaturated fatty acids to increase production and health of dairy livestock.

This study aimed to evaluate the effects of energy and organic zinc supplement, specifically zinc palm oil soap (ZPOS), on fermentability, digestibility, and unsaturated fatty acid profiles in vitro. The benefit of this research is to identify the most efficient form of palm oil supplementation to increase energy supply and improve the profile of unsaturated fatty acids in the rumen without disrupting feed fermentability in vitro. Discovery of the most effective use of palm oil in providing an alternative solution to energy and zinc deficiencies in dairy cattle.

120

MATERIALS AND METHODS

121

Zinc Soap and Feed Preparation

122 The preparation of zinc soap was carried out according to (Cabatit, 1979). The palm oil used to make Zinc soap was a commercial palm oil which generally sold on the 123 market. The Zinc soap of palm oil was made based on saponification number. Palm oil is 124 measured for its saponification number and the KOH added is proportional to the 125 saponification number. In order to protect palm oil, zinc chloride (ZnCl2) is added in an 126 127 amount equal to the KOH required to soak the oil, which is determined by the outcomes 128 of reaction stoichiometric calculations. Palm oil was put into a glass beaker and incubated in a water bath at 90°C. KOH that has been dissolved in ethanol is added to hot oil and 129 130 stirred until the oil is completely hydrolyzed. Next, add the ZnCl2 solution and mix continuously until a paste forms. The final step is to remove the remaining KOH by 131 adding water and washing using a centrifuge. This process produces cream soap called 132 Zinc soap of palm oil (ZPOS). The nutrient content of ZPOS is 24.36% ether extract, 133 4.2% crude fiber, 4.94% Zn and gross energy 5257 kcal/kg. 134

The feed consists of forage and concentrate that has been formulated for feeding lactating dairy goats with a content of crude protein (CP) 14% and total degestible nutrients (TDN) 63%. The feed was composed of corn straw, soybean hulls, rice bran, pollard, cassava waste meal, coconut meal, soybean meal and molasses. The composition of ingredients and nutrient content of the ration as shown in Table 1.

140

In Vitro Experiment

141 The experiment was designed using a completely randomized design with four 142 treatments and five replications. The treatments tested were T0 = basal diet without 143 supplementation, T1 = basal diet + 5% palm oil (PO), T2 = basal diet + 5% partially

144 ZPOS (3.75% ZPOS+1.25% PO), and T3 = basal diet + 5% ZPOS. Rumen liquid as a 145 source of inoculum was taken from three female goats with fistulas that belongs to the 146 Faculty of Animal and Agricultural Sciences Diponegoro University, and were 147 homogenized. The goats were given a dietary trial following the ration for in vitro 148 substrate for one week before rumen liquid was taken. Rumen liquid was collected before 149 morning feeding from a fistulated rumen. The rumen liquid was filtered using cheese 150 cloth and placed into a 39 °C flasks under anaerobic conditions.

In vitro experiments were carried out according to the method of Tilley and Terry (1963). In the fermenter tube, 0.55 grams of feed samples from each treatment were added, followed by 40 ml of McDaugall's solution and 10 ml of rumen liquid. The fermentor cylinder was flowed by CO2 gas and closed to anaerobic conditions. The fermentor tube was incubated in a 39°C water temperature.

156

Nutrient Digestibility

The digestibility of nutrients including dry matter (DMD), organic matter (OMD), 157 158 crude protein (CPD), ether extract (EED) and crude fiber (CFD) was measured through 159 two stages of incubation, namely fermentative and enzymatic. First stage, the fermentor 160 tube was incubated in a 39°C water temperature for 2x24 hours, and process was stopped by immersing the fermenter tube in ice water for 20 minutes. Then the tube was 161 162 centrifuged for 15 minutes at a speed of 3,000 rpm and the supernatant was discarded. 163 Second stage, the HCL pensin solution was added 50 ml into the tube and reincubated for 2x24 hours in a 39°C water temperature under aerobic conditions. The sample was filtered 164 165 with Whatman No.41 filter paper using a vacuum pump. The filter results were analyzed by DM, Ash, CP, EE and C, NDF, and ADF (AOAC, 2012) to calculate nutrient 166

digestibility values. Fermentation is also carried out without feed samples called blanks.Nutrien digestibility samples are calculated by the formula :

169

Nutrient Digestibility (%)

170
$$= \frac{(\text{Nutrient sample, g} - (\text{Nutrient residue, g} - \text{Nutrient blank, g})}{\text{nutrient sample, g}} x100$$

171

172

pH value, VFA, NH3 and Methane production

The process of measuring pH, VFA, and NH3 followed the same procedure as that 173 174 for nutrient digestibility, but with the fermentation stopped at the 4-hour mark. After 175 centrifuging the fermentor tube at 3,000 rpm for 15 minutes, the supernatant was taken to measure the rumen pH, NH3, and total and partial VFA concentrations. A digital pH 176 meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample 177 178 was tested three times. NH3 levels were determined using a spectrophotometer, 179 employing a spectrophotometric method based on the catalyzed endophenol reaction to form a stable blue compound (Chaney & Marbach, 1962). Gas chromatography, as 180 reported by (Cottyn & Boucque, 1968), was used to quantify the generation of partial 181 VFAs (acetic acid, propionate, and butyrate). A mililiterl of 95-97% H₂SO₄ was 182 183 combined with a 10 ml incubation sample. A mililiter of the sample combination was mixed with 0.0003 g of dehydrated sulfosalicylate. After that, the mixture was centrifuged 184 for 10 minutes at 7°C at 12,000 rpm. The samples were ready for gas chromatography 185 identification. 186

The methane gas concentration and energy conversion efficiency was determined by calculating the VFA stoichiometry, which was the estimation using the formula Orskov and Ryle (1990). The formula used for methane concentration were : Methane (mM) = 0.5 (% Acetate) - 0.25 (% Propionate) + 0.5 (% Butyrate). Energy conversion

efficiency was calculated based on the stoichiometry of the carbohydrate fermentation
reaction from hexose to VFA (acetate, propionate and butyrate). The calculation formula
used was:

194
$$E(\%) = \frac{(0,622 \text{ pA} + 1,091 \text{ pP} + 1,558 \text{ pB})}{\text{pA} + \text{pP} + 2\text{pB}} x100$$

195

196

Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid

197 To calculate protozoa, microbial protein and fatty acid concentrations in the rumen liquid, the fermentation process was carried out for 24 hours. The populations of protozoa 198 were calculated following the procedures of Ogimoto and Imai (1981). The solution used 199 200 was methil formalin saline which was made from a mixture of 100 ml 35% formaldehyde, 2 g tryhan blue, 9 g NaCl and 900 ml aquades. The number of protozoa was calculated 201 202 by using a microscope at magnification 100 times. Measurement of rumen liquid protein microbes using the method of Makkar et al. (1982) on the principle of gradual 203 centrifugation. The fatty acid profile of rumen liquid was analyzed using a gas 204 205 chromatograph (Model GC-14A, Shimadzu Corporation, Kyoto, Japan). Samples were 206 stored at -20°C until analysis. Following the method of Cocks and Rede (1966), the fatty 207 acid composition was determined by converting oil to fatty acid methyl esters. This 208 involved adding 950 µL of n-hexane, 50 mg of oil, and 50 µL of sodium methoxide. The peaks of the fatty acid methyl esters were identified by comparing their retention times 209 with those of authentic standards. The relative percentage of each fatty acid was 210 211 calculated based on its peak area relative to the total peak area of all fatty acids in the sample. Fatty acids were categorized into short-chain fatty acids (SCFA) as having fewer 212 213 than six carbon atoms, medium chain fatty acids (MCFA) ranging from C6 to C12, and long-chain fatty acids (LCFA), which are greater than C12 (Wang et al., 2020). 214

215 **Statistical Analysis** The data were analyzed using a completely randomized design in SPSS 16. 216 217 Duncan's Multiple Range Test with significance was set at p < 0.05 to compare treatments 218 when a significant effect was observed. 219 220 RESULTS **Feed Fermentability** 221 222 The fermentability of feed is determined by various factors such as pH, total 223 protozoa count, microbial protein content, NH3 concentration, and total VFA production 224 in rumen liquid. These parameters are detailed in Table 2. The pH levels across all 225 treatments fell within the normal range of 6.75-6.82. While the treatment did not 226 significantly affect pH (p>0.05), notable differences (p<0.05) were observed in the total 227 protozoa count, microbial protein content, total VFA, and NH3 concentrations. Palm oil supplementation had the most pronounced impact, notably reducing protozoa count and 228 229 microbial protein. When zinc soap palm oil protection was partially supplemented (T2), it led to higher microbial protein and VFA production compared to feed supplemented 230 with total zinc palm oil soap, although the difference was not significant. 231 232 **Feed Digestibility** Table 3 presents the feed digestibility results from the palm oil zinc soap 233 234 supplementation treatment. Statistical analysis revealed no significant differences in the 235 digestibility of dry matter (DMD), organic matter (OMD), and crude protein (CPD) due 236 to the palm oil zinc soap treatment. However, there were significant differences (P<0.05) in the digestibility of ether extract (EED), crude fiber (CFD), neutral detergent fiber 237 238 (NDFD), and acid detergent fiber (ADFD). Both non-protected and protected palm oil

increased EED. Improvements in fiber digestibility (CFD, NDFD, and ADFD) were only
observed with zinc soap supplementation (T2 and T3), whereas non-protected palm oil
showed no difference from the control. The highest fiber digestibility was achieved with
partial zinc soap supplementation (T2), though it was not significantly different from the
total protection zinc soap supplementation (T3).

244

Relative Proportion of VFA

245 Palm oil (PO and ZPOS) supplementation significantly influenced the partial 246 VFA production of acetate, propionate, butyrate, the A/P ratio, and methane (P<0.05), 247 but did not impact the efficiency of hexose energy conversion into VFA. The relative persentation of VFAs in this study were 59%–62% acetic acid, 24%–29% propionic acid, 248 249 and 12%–13% butyric acid. According to Duncan's Mulitiple Range Test results, both partial (T2) and total (T3) ZSPO supplementation resulted in higher levels of acetate, 250 propionate, and butyrate compared to PO supplementation (T1) and the control (T0). 251 252 Conversely, PO and ZSPO supplementation produced a lower A/P ratio. The estimated 253 methane production also decreased with PO and ZSPO supplementation.

254

Fatty Acids in Rumen Liquid

Table 5 outlines the fatty acid composition in rumen liquid. The control diet primarily contained short-chain fatty acids (SCFA), with a notably higher concentration of C4 compared to other treatments (P<0.05). Supplementation with palm oil (PO and ZSPO) led to increased levels of palmitate (C16:0), stearate (C18:0), and oleate (C18:1) relative to the control (P<0.05). However, the proportion of stearate was significantly lower with ZSPO supplementation (P<0.05). Unsaturated fatty acids, particularly cis-9 18:1, trans-11 18:1, linoleate (18:2), linolenic acid (18:3), EPA (20:5), and DHA (C22:6)

showed a significant increase in the 3.75% ZPOS (T2) and 5% ZSPO (T3) treatments
(P<0.05).

These fatty acids are classified into various categories, including short-chain fatty 264 acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs), 265 saturated fatty acids (SFAs), unsaturated fatty acids (USFAs), monounsaturated fatty 266 267 acids (MUFAs), and polyunsaturated fatty acids (PUFAs). According to Table 6, the control diet exhibited a higher total content of SCFAs compared to the diets supplemented 268 with PO and ZSPO (P<0.05), but produced a lower amount of LCFA. SFAs showed 269 270 higher in control and PO suplmentation, whereas ZSPO supplementation demonstrated an ability to elevate USFAs. Notably, the 3.75% ZPOS and 5% ZSPO supplementation 271 272 resulted in higher levels of both MUFAs and PUFAs compared to the other treatments. 273 DISCUSSION 274 275 **Feed Fermentability** The pH is one of the crucial factors in assessing rumen health. The findings 276 277 indicated that adding palm oil and protected palm oil zinc soap did not disrupt the rumen 278 fermentation process. Similar results have been reported in other studies, such as those

conducted by Adeyemi et al. (2015), Amanullah et al. (2022), and Roy et al. (2017). The

reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil,

particularly lauric acid. According to Rahman et al., (2022), palm oil typically contains

about 44% lauric acid (C12:0). Lauric acid is known to have antiprotozoal properties,
which can potentially disrupt protozoan cell membranes and inhibit their growth (Santos
et al., 2022).

279

280

285 Ibrahim et al. (2021) discovered that supplementing with palm oil altered the rumen microbial population in ruminants, potentially affecting their overall protein 286 287 synthesis capability. Sears et al. (2024) reported that oleic acid significantly reduces Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids 288 could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting 289 in decreased protein synthesis. The use of zinc soap palm oil protection, both partially 290 (T2) and fully (T3), can mitigate the harmful effects of unsaturated fatty acids, enabling 291 292 microbes to develop as effectively as in the control group.

Yanza et al. (2021) found that ruminants given protected medium chain fatty acids (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to increased propionate production. Propionate is formed from the breakdown of glycerol during fat hydrolysis. The NH3 concentration in the T2 treatment was the lowest among all treatments, while microbial protein production was the highest. This indicates that NH3 is utilized for microbial protein synthesis (Getabalew & Negash, 2020).

300

Feed Digestibility

301 The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were 302 unaffected by 5% non-protected palm oil zinc soap supplementation, indicating that this 303 level of supplementation is safe for rumen microbial growth. These results are consistent with previous research, which found that 6% supplementation with vegetable oils (olive 304 305 oil, sunflower oil, and linseed oil) yielded OMD, NDFD, and ADFD values comparable 306 to the control, although linseed oil resulted in higher digestibility than sunflower oil 307 (Vargas-bello-p et al., 2020). The effect of oil supplementation on digestibility is highly dependent on the nutrient composition of the feed and the fatty acid profile of the oil. The 308

experimental feed in this study, characterized by high fiber content and low ADF (13.77%), supports the proliferation of cellulolytic microbes. A high-fiber diet may mitigate the potential negative impact of oil on fiber digestion by rumen microbes (Benchaar et al., 2015). Both non-protected (T1) and protected (T2 and T3) palm oil increased EED, supporting the conclusion that palm oil can be use d as an energy supplement without compromising rumen feed fermentability.

A notable finding from this research is that both partial and total zinc soap 315 316 supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and 317 ADFD. This effect is likely due to the fat and zinc content in palm oil. Palm oil contains high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki et al., 2015). 318 319 Research by Sears et al. (2024) indicate an increase in Prevotella and Fibrobacter populations in response to palmitic acid supplementation. This suggests that cellulolytic 320 bacteria can incorporate palmitic acid into their cell membranes, thereby increasing 321 energy availability for metabolic processes. Furthermore, zinc is crucial for various 322 323 metabolic functions in rumen microbes.

324 Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing 325 enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain et 326 al., 2016; Uniyal et al., 2017). It is indispensable for preserving the structural and 327 functional integrity of over 2000 transcription factors and 300 enzymes. It can be contended that virtually all metabolic pathways are reliant, to varying degrees, on at least 328 329 one Zn-dependent protein (Ranasinghe et al., 2015). Recent research by Fellner et al. 330 (2021) elucidated that Zn supplementation precipitated increased acetate production and a heightened acetate/prothionate ratio. This delineates an augmented fiber digestion 331 process facilitated by cellulolytic bacteria, consequent to heightened microbial protein 332

synthesis. This conclusion aligns with findings indicating elevated levels of microbial
protein compared to PO supplementation (P1), specifically 13.37 (T2) and 11.41 (T3)
versus 9.37 mg/ml in the P1 treatment (Table 3).

336

Relative Proportion of VFA

337 The relative proportion of acetate observed is slightly lower than that reported by Anzhany et al. (2024), which ranged from 69% to 72%, while the proportions of 338 propionate and butyrate are comparatively higher. According to Amanullah et al. (2022), 339 340 palm oil supplementation modifies the rumen environment, thereby altering the ratio of 341 cellulolytic to amylolytic microbes. Both partial and total ZSPO supplementation resulted in significantly higher acetate production compared to non-protected palm oil (P<0.05). 342 343 These findings are consistent with the increased microbial protein levels observed with ZPOS supplementation, suggesting enhanced bacterial growth. Zinc (Zn) is an essential 344 trace mineral that functions as a cofactor for over 300 enzymes, including DNA and RNA 345 polymerase which play a role in protein synthesis (Franco et al., 2024; Sloup et al., 2017). 346 The increase in propionate in the ZSPO supplementation treatment resulted from 347 348 the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted

349 into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids 350 351 from rumen bio-hydrogenation and increasing the duodenal flows of mono and polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with 352 353 studies showing that ZSPO supplementation leads to an increase in protozoan populations 354 (Table 4). Zinc supplementation has been associated with shifts in rumen volatile fatty 355 acid profiles, notably an increase in propionate and a reduction in the acetate-topropionate ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane 356

- production and a lower A/P ratio are advantageous, as higher propionate levels provide a
 carbon framework and synthetic energy for livestock.
- 359

Fatty Acids in Rumen Liquid

Previous research showed that oil supplementation caused a decrease in the 360 361 proportion of short chain fatty acids in rumen fluid, while increasing the presence of long 362 chain fatty acids. Mancini et al. (2015) argue that this transition is caused by the large 363 number of long chain fatty acids (LSFA) in palm oil, namely 98.3%, and the remaining 364 1.7% consists of short chain fatty acids (SCFA). Among long-chain fatty acids, which account for 98.3% of the total, almost half (49.9%) are unsaturated fatty acids (USFA), 365 consisting of 39.2% monounsaturated fatty acids (MUFA) and 10 .5% polyunsaturated 366 367 fatty acids (PUFA). The prevalence of saturated fatty acids (SFA) in palm oil contributes to the range of rumen saturated fatty acid levels, where PO supplementation treatment 368 (T1) has higher SFA levels compared to ZPOS supplementation, namely T1 71.14%, T2 369 370 61.85% and T3 59.67% (Table 6).

371 Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities, 372 namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and 373 glycerol. Unsaturated fatty acids including oleic acid (18:1) undergo a biohydrogenation process, it being converted into saturated fatty acids stearic acid (18:0) in the rumen by 374 375 bacteria (Buccioni et al., 2012). Harvatine et al. (2009) who tracked the biohydrogenation 376 process of oleic acid found that oleate in the rumen can change into trans and cis forms 377 because rumen microbes produce cis/trans isomesase enzymes, and there is an isomerase 378 that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate) to trans 18:1. The 379 dominant biohydrogenation process that occurs in the rumen is bacteria hydrogenate

polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 fatty acids, then
trans 18:1 fatty acids into stearic acid (18:0).

Consistent with our study's findings, supplementation with ZSPO (T2 and T3) 382 resulted in elevated levels of trans18:1 and cis 18:1, alongside reduced stearate (18:0) 383 concentrations compared to non-protected oil supplementation (T1). Amanullah et al. 384 (2022) conducted a comparative analysis involving corn oil, linseed oil, and Ca salt 385 (protected C18:2n-6), revealing that protected fatty acids (Ca Salt) led to diminished 386 387 stearate levels but higher proportions of MUFA and PUFA. These findings are consistent 388 with the research by Satir et al. (2023), which demonstrated that 3% protected palm oil supplementation can increase the content of palmitic acid (SFA) and oleic acid 389 390 (MUFA).Stearate is the final product of the biohydrogenation of oleic, linoleic, and linolenic acids. This indicates a complete inhibition of the biohydrogenation process in 391 the ZSPO treatment. The protection of polyunsaturated fatty acids through saponification 392 involves bonding the carboxyl group with zinc, resulting in the inhibition of 393 394 isomerization, which is a prerequisite for the hydrogenation of unsaturated fatty acids into 395 saturated fatty acids. This is reflected in the higher proportion of MUFA in the ZSPO 396 treatment compared to PO and the control (Table 6). The substantial presence of PUFA, 397 notably EPA and DHA, underscores Zinc's role in the elongation and desaturation 398 process, facilitated by the formation of arachidonic acid (20:4) through delta-6-desaturase (D6D) and delta-5-desaturase (D5D) enzymes (Ridgway, 2016). Zinc's indispensability 399 400 is further highlighted as a pivotal mineral cofactor for D6D and D5D enzymes (Noland & Drisko, 2020). 401

402 Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen,403 particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic

404	acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock
405	products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZSPO
406	supplementation holds potential for enhancing the quality of meat and milk fat.
407	
408	CONCLUSION
409	Based on the results of this research, it can be concluded that zinc soap from palm
410	oil (ZPOS) can be developed as a source of energy and organic Zn. Its supplementation
411	in feed as much as 5% has beneficial effects, namely increasing fermentability, MUFA,
412	EPA and DHA in the rumen . It was indicated that partial suplementation of ZPOS (3.75%)
413	ZPOS+1.25%PO) resulted in higher protozoa populations and fiber digestibility. Further
414	investigation is required to test the ZPOS on dairy cow in vivo.
415	
416	CONFLICT OF INTEREST
417	The authors declare that there is no conflict of interest with any financial, personal,
418	or other relationships with other people or organization related to the material discussed
419	in the manuscript.
420	
421	ACKNOWLEDGEMENT
422	The research was funded by Faculty of Animal and Agricultural Science,
423	Diponegoro University.
424	
425	REFERENCES
426	Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A.
427	Karsani, & A. Q. Sazili. 2015. Influence of Carotino Oil on in Vitro Rumen

Fermentation, Metabolism and Apparent Biohydrogenation of Fatty Acids. Animal
Science Journal. 86:270–78. https://doi.org/10.1111/asj.12279.

430 Amanullah, S. M., S. Lee, D. Hand, Vi. Paradhipta, Y. Joo, D. Kim, P. Seong, S.

431 Jeong, & S. Kim. 2022. Impact of Oil Sources on In Vitro Fermentation, Microbes,

432 Greenhouse Gas, and Fatty Acid Profile in the Rumen. Fermentation. 8:242.

433 https://doi.org/10.3390/fermentation8050242.

- 434 Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid Biohydrogenation,
- Fermentation, and Digestibility of Ration Containing Napier and King Grass with
 Different Harvest Ages and Altitudes : In Vitro Study. Tropical Animal Science
 Journal. 47:68–78. https://doi.org/10.5398/tasj.2024.47.1.68.
- 438 AOAC. 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical
 439 Chemists, Washington, DC.

Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil
Supplementation to Dairy Cows Fed Diets Based on Red Clover Silage or Corn

442 Silage: Effects on Methane Production, Rumen Fermentation, Nutrient Digestibility,

N Balance, and Milk Production. Journal of Dairy Science. 98:7993–8008.
https://doi.org/10.3168/jds.2015-9398.

- Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid
 Metabolism in the Rumen: New Insights on Lipolysis and Biohydrogenation with
 an Emphasis on the Role of Endogenous Plant Factors. Animal Feed Science and
 Technology. 174:1–25. https://doi.org/10.1016/j.anifeedsci.2012.02.009.
- 449 **Cabatit, B. C.** 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press, Manila.

450

451 and Ammonia. Clinical Chemistry. 8:130–32.

Chaney, A. L., & E. P. Marbach. 1962. Modified Reagents for Determination of Urea

- 452 https://doi.org/10.1093/clinchem/8.2.130.
- 453 Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of Zinc-Bearing
- 454 Palygorskite on Rumen Fermentation in Vitro. Asian-Australasian Journal of
 455 Animal Sciences. 32:63–71. https://doi.org/10.5713/ajas.17.0920.
- 456 Cocks, L. V., & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis.
- 457 Academic Press, London.
- 458 Cottyn, B. G., & C. V. Boucque. 1968. Rapid Method for the Gas-Chromatographic
 459 Determination of Volatile Fatty Acids in Rumen Fluid. J.Agric.Food Chem. 16:105–
 460 7. https://doi.org/10.1021/if60155a002.
- 461 Duffy, R., M. Yin, & L. E. Redding. 2023. A Review of the Impact of Dietary Zinc on
 462 Livestock Health. Journal of Trace Elements and Minerals. 5:100085.
 463 https://doi.org/10.1016/j.jtemin.2023.100085.
- Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The Effect of Total or Partial
 Protected Vegetable Oil Supplementation on In Vitro Digestibility, Feed
 Fermentability and Energy Efficiency. Buletin Peternakan. 43:171–78.
 https://doi.org/10.21059/buletinpeternak.v43i3.43231.
- Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of Supplemental
 Zinc on Ruminal Fermentation in Continuous Cultures. Applied Animal Science.
 37:27–32. https://doi.org/10.15232/aas.2020-02104.
- 471 Franco, C. E., E. L. Rients, F. E. Diaz, S. L. Hansen, & J. L. McGill. 2024. Dietary
 472 Zinc Supplementation in Steers Modulates Labile Zinc Concentration and Zinc
 473 Transporter Gene Expression in Circulating Immune Cells. Biological Trace
 474 Element Research. https://doi.org/10.1007/s12011-024-04123-6.
- 475 Gao, J., M. Wang, Y. Jing, X. Sun, T. Wu, & L. Shi. 2016. Impacts of the Unsaturation

- 476 Degree of Long-Chain Fatty Acids on the Volatile Fatty Acid Profiles of Rumen
 477 Microbial Fermentation in Goats in Vitro. Journal of Integrative Agriculture.
 478 15:2827–33. https://doi.org/10.1016/S2095-3119(16)61418-1.
- 479 Getabalew, M., & A. Negash. 2020. Nitrogen Metabolism and Recycling in Ruminant
 480 Animals : A Review College of Agricultural and Natural Resources Science ,.
 481 Academic Journal of Nutrition. 9:29–38.
 482 https://doi.org/10.5829/idosi.ajn.2020.29.38.
- Harvatine, K. J., Y. R. Boisclair, & D. E. Bauman. 2009. Recent Advances in the
 Regulation of Milk Fat Synthesis. Animal. 3:40–54.
 https://doi.org/10.1017/S1751731108003133.
- Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The Role of Zinc, Manganse
 and Copper in Rumen Metabolism and Immune Function: A Review Article. Open
 Journal of Animal Sciences. 6:304–24. https://doi.org/10.4236/ojas.2016.64035.
- 489 Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, S. C. L. Candyrine, W.
- 490 N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of
- Vegetable Oil Supplementation on Rumen Fermentation and Microbial Population
 in Ruminant: A Review. Tropical Animal Health and Production. 53:1–11.
 https://doi.org/10.1007/s11250-021-02863-4.
- Khaskheli, A. A., & L. Chou. 2020. Evaluation of Fatty Acids Composition,
 Metabolizable Energy, Nutrients Digestibility of Crude Palm Oil Fat Crystals in
 Turkeys. Animal Feed Science and Technology. 270:114734.
 https://doi.org/10.1016/j.anifeedsci.2020.114734.
- Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of
 Sunflower Oil Supplementation as Unsaturated Fatty Acid Source on Rumen

- Fermentability and Performance of Lactating Garut Ewes. Journal of the Indonesian
 Tropical Animal Agriculture. 42:185–93. https://doi.org/10.14710/jitaa.42.3.185193.
- Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-Chemical Properties, Fatty
 Acid Profile and Nutrition in Palm Oil. Journal of Paramedical Sciences (JPS).
 6:117–34. https://doi.org/10.22037/jps.v6i3.9772.
- Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple
 Determination of Microbial Protein in Rumen Liquor. J. Dairy Sci. 65:2170–73.
 https://doi.org/10.3168/jds.S0022-0302(82)82477-6.
- 509 Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono.
 510 2015. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects
- on Health. Molecules. 20:17339–61. https://doi.org/10.3390/molecules200917339.
- Martínez, A., & D. C. Church. 1970. Effect of Various Mineral Rumen Cellulose
 Elements. Journal of Animal Science. 31:982–90.
 https://doi.org/10.2527/jas1970.315982x.
- 515 Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of Different Vegetable Oils
- on In Vitro Ruminal Fermentability and Nutrient Digestibility in Ettawah Crossbred
- 517 Goat. Animal Production. 21:22–29. https://doi.org/10.20884/1.jap.2019.21.1.689.
- 518 Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan.
- 519 2015. The Role of Ciliate Protozoa in the Rumen. Frontiers in Microbiology. 6:1–
 520 14. https://doi.org/10.3389/fmicb.2015.01313.
- Noland, D., & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition
 Therapy. In : L. Wagner (Eds). Humana Press, Switzerland.
- 523 Ogimoto, K., & S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Societies

524 Press, Tokyo.

- 525 Oliveira, A. S. 2015. Meta-Analysis of Feeding Trials to Estimate Energy Requirements
- 526 of Dairy Cows under Tropical Condition. Animal Feed Science and Technology.

527 210:94–103. https://doi.org/10.1016/j.anifeedsci.2015.10.006.

- 528 Orskov, E. R., & M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied
 529 Science, London (UK).
- 530 Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui
- J. B. Bessa, & L. Lopes-da-costa. 2022. Effects of Feeding Rumen-Protected

Linseed Fat to Postpartum Dairy Cows on Plasma n-3 Polyunsaturated Fatty Acid

533 Concentrations and Metabolic and Reproductive Parameters. J. Dairy Sci. 105:361–

534 74. https://doi.org/10.3168/jds.2021-20674.

- Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The Composition of Fatty
 Acids in Several Vegetable Oils from Indonesia. Biodiversitas. 23:2167–76.
 https://doi.org/10.13057/biodiv/d230452.
- Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P.
 Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of Zinc
 Supplementation on Serum Lipids: A Systematic Review and Meta-Analysis.
 Nutrition and Metabolism. 12. https://doi.org/10.1186/s12986-015-0023-4.
- 542 Ranaweera, K. K. T. N., M. B. P. K. Mahipala, & W. M. P. B. Weerasinghe. 2020.
- 543 Evaluation of Energy Balance in Tropical and Temperate Crossbred Dairy Cows at
- 544 Post-Partum Transition Stage: A Case Study. Tropical Agricultural Research.
- 545 31(2):12. https://doi.org/10.4038/tar.v31i2.8363.
- 546 Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. In R.S.
 547 McLeod (Eds). Elsevier, Netherland.

548	Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of Different Vegetable Oils or
549	Rumen Fermentation and Conjugated Linoleic Acid Concentration in Vitro
550	Veterinary World. 10:11–16. https://doi.org/10.14202/vetworld.2017.11-16.

- 551 Santos, F. A., G. S. Cruz, F. A. Vieira, B. R. S. Queiroz, C. D. T. Freitas, F. P.
- 552 Mesquita, & P. F. N. Souza. 2022. Systematic Review of Antiprotozoal Potential
- of Antimicrobial Peptides. Acta Tropica. 236:106675.
 https://doi.org/10.1016/j.actatropica.2022.106675.
- Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of Adding Rumen Protected
 Palm Oil in Diet on Milk Fatty Acid Profile and Lipid Health Indices in Kivircik
 Ewes. Tropical Animal Health and Production. 55:159.
 https://doi.org/10.1007/s11250-023-03580-w.
- Sears, A., F. Hentz, J. de Souza, B. Wenner, Robert E. Ward, & F. Batistel. 2024.
 Supply of Palmitic, Stearic, and Oleic Acid Changes Rumen Fiber Digestibility and
 Microbial Composition. J. Dairy Sci. 107:902–16. https://doi.org/10.3168/jds.202323568.
- Shingfield, K. J., & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in
 Ruminants and Humans. In : B. Sels and A. Philippaerts (Eds). Conjugated Linoleic
 Acids and Conjugated Vegetable Oils. The Royal Society of Chemistry.
 <u>https://doi.org/10.1039/9781782620211-00001</u>.
- 567 Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in
 568 the Animal Organism: A Review. Scientia Agriculturae Bohemica. 48:13–21.
 569 https://doi.org/10.1515/sab-2017-0003.
- 570 Swain, P. S., S. B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016. Nano
- 571 Zinc, an Alternative to Conventional Zinc as Animal Feed Supplement: A Review.

- 572 Animal Nutrition. 2:134–41. https://doi.org/10.1016/j.aninu.2016.06.003.
- 573 Tilley, J. M. A., & R. A. Terry. 1963. A Two-Stage Technique for the in Vitro Digestion
- 574
 of
 Forage
 Crops.
 Grass
 and
 Forage
 Science.
 18:104–11.

 575
 https://doi.org/10.1111/j.1365-2494.1963.tb00335.x.
 https://doi.org/10.1111/j.1365-2494.1963.tb00335.x.
 https://doi.org/10.1111/j.1365-2494.1963.tb00335.x.
- 576 Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P.
- Faverdin. 2023. Genetic Relationships between Weight Loss in Early Lactation and
 Daily Milk Production throughout Lactation in Holstein Cows. J. Dairy Sci.
- 579 106:4799–4812. https://doi.org/10.3168/jds.2022-22813.
- 580 Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017.
- Comparative Efficacy of Zinc Supplementation from Different Sources on Nutrient
 Digestibility, Hemato-Biochemistry and Anti-Oxidant Activity in Guinea Pigs.
 Livestock Science. 204:59–64. https://doi.org/10.1016/j.livsci.2017.08.009.
- 584 Vargas-bello-p, E., L. E. Robles-jimenez, R. Ayala-hern, J. Romero-bernal, N.
- 585 **Pescador-salas, & O. Alonso**. 2020. Effects of Calcium Soaps from Palm, Canola
- and Safflower Oils on Dry Matter Intake, Nutrient Digestibility, Milk Production,
- and Milk Composition in Dairy Goats. Animals. 10.
 https://doi.org/10.3390/ani10101728.
- 589 Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L.
- 590 Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of Zinc Sulfate and Coated Zinc
- 591 Sulfate on Lactation Performance, Nutrient Digestion and Rumen Fermentation in
- Holstein Dairy Cows. Livestock Science. 251.
 https://doi.org/10.1016/j.livsci.2021.104673.
- Wang, S., Y. Wang, F. Shahidi, & C. Ho. 2020. Health Effects of Short-Chain, MediumChain, and Long-Chain Fatty Acids, Saturated vs Unsaturated and Omega-6 vs

- 596 Omega-3 Fatty Acids and Trans Fats. In : F. Shahidi (Ed). Bailey's Industrial Oil 7th and Fat Products: ed. Wiley & Sons, 597 John Ltd. 598 https://doi.org/10.1002/047167849X.bio100.
- Wardeh, Muhammad Fadel. 1981. "Models for Estimating Energy and Protein 599 600

Utilization for Feeds: All Graduate Theses and Dissertations." Utah State University.

- 601 World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group - The 602 World Bank, Washington, USA.
- 603 Wulandari, B. P. Widyobroto, & A. Agus. 2020. In Vitro Digestibility and Ruminal 604 Fermentation Profile of Pangola Grass (Digitaria Decumbens) Supplemented with Crude Palm Oil Protected by Sodium Hydroxide. Livestock Research for Rural 605 606 Development. 32. https://www.lrrd.cipav.org.co/lrrd32/7/wulan32102.html.
- 607 Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, M. Gao, H.
- Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The Effects of Dietary 608
- Medium-Chain Fatty Acids on Ruminal Methanogenesis and Fermentation in Vitro 609
- 610 and in Vivo: A Meta-Analysis. Journal of Animal Physiology and Animal Nutrition.
- 611 105:874-89. https://doi.org/10.1111/jpn.13367.

Item	Composition
Ingredient :	
Corn straw	33.38
Soybean hull	12.25
Rice bran	7.42
Pollard	9.32
Cassava waste meal	9,93
Coconut meal	17.01
Soybean meal	6.98
Molases	3.00
Vitamin and mineral mixture	0.80
Nutrient composition :	
Dry matter (DM), %	84.68
Ash, %DM	8.63
Crude protein, %DM	14.32
Ether extract, %DM	4.43
Crude fiber, %DM	20.02
Calsium, %DM	0.33
Phospor, %DM	0.28
Zinc, mg/kg DM	16,93
Neutral detergent fiber, %DM	35.51
Acid detergent fiber, %DM	14.77
Total digestible nutrient (TDN) ¹ , %	63.15

and chamical composition of experimental diet (dry matter basis) 1. 4.0 ~ ^ ~ **T**.11. 4 т

-17.2649 + 1.2120(PK) + 0.8352(BETN) + 2.4637(LK) + 0.4475(SK), according615 to (Wardeh, 1981). 616

- 617
- 618

619

Table 2. The pH, total protozoa, microbial protein, NH3, and total VFA production of rumen liquid due to supplementation of the zinc soap palm oil (ZPOS) 620

Donomoton		Trea	SEM				
Parameter	Т0	T1	T2	T3	SEM	p-Value	
pН	6.76	6.75	6.73	6.82	0.018	0.224	
Protozoa (10 ³ cell/ml)	98.14 ^a	32.57°	82.83 ^{ab}	69.31 ^b	0.044	0.000	
Microbial protein (mg/ml)	13.01 ^a	9.37 ^b	13.37 ^a	11.41 ^{ab}	0.469	0.002	
NH ³ (mM)	14.06 ^a	14.45 ^a	9.64 ^b	10.36 ^b	0.543	0.000	
VFA (mM)	87.52 ^b	101.78 ^b	164.38ª	157.89ª	8.134	0.000	

a,b different superscripts at the same column indicate significant differences (P<0.05). 621 T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal 622 diet+partially ZPOS(3.75% ZPOS+1.25%PO); T3= basal diet+5% ZPOS 623

624

625

626

627

630	oil (ZPOS).						
	Parameter	Treatment				SEM	p-Value
		T0	T1	T2	T3	SEM	p-value
	Digestibility :						
	Dry matter (%)	64.06	63.82	67.20	69.24	0.850	0.054
	Organic matter (%)	69.16	65.89	69.65	69.98	0.632	0.068
	Crude protein (%)	68.69	67.99	66.39	65.11	0.569	0.100
	Ether extract (%)	88.45 ^b	94.34 ^a	93.22 ^a	92.35 ^a	0.587	0.000
	Crude fiber (%)	54.46 ^b	51.46 ^b	73.63 ^a	66.11 ^{ab}	3.057	0.020
	Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03 ^a	64.62 ^{ab}	2.830	0.006
	Acid detergent fiber (%)	45.12 ^b	44.56 ^b	65.81 ^a	53.76 ^{ab}	2.704	0.006

Table 3. Feed nutrient in vitro digestibility due to supplementation of the zinc soap palm
 oil (ZPOS).

631 ^{a,b} different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal

633 diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

Table 4. Fermentability of feed due to palm oil supplementation in vitro

D		Treat	SEM	. V.L.		
Parameter	Т0	T1	T2	Т3	SEM	p-Value
Acetate (mM)	41.17 ^b	51.10 ^a	59.31ª	65.80 ^a	2.579	0.000
Propionate (mM)	15.91°	25.41 ^b	28.73ª	29.89 ^a	1.348	0.000
Butyrate (mM)	8.73 ^b	10.28 ^b	12.55 ^a	14.20 ^a	0.546	0.000
A/P	2.59 ^a	2.01 ^b	2.06 ^b	2.20 ^b	0.061	0.000
Methan (mM)	31.87 ^a	28.04 ^b	28.58 ^b	29.57 ^{ab}	0.489	0.014
Efficiency of energy conversion (%)	73.05	73.19	74.74	74.47	0.357	0.226

a,b different superscripts at the same column indicate significant differences (P<0.05).

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal diet+partially ZPOS (3.75% ZPOS+1.25% PO); T3= basal diet+5% ZPOS

Table 5. Proportion of fatty Acids in rumen liquid due supplemented of zinc soap palm Oil (ZPOS) In Vitro

Fatty Acids		Treat	nent		SEM	p-Valu
Tatty Aclus	T0	T1	T2	T3	SEM	p-vaiu
		%	fat			
Short chain Fatty Acids (SCFA)						
C4	7.34 ^a	5.34 ^b	5.27 ^b	2.36 ^c	0.435	0.000
Medium chain Fatty Acids (SCFA)						
C6	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C8, kaprilat	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C10, kaprat	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C12, laurat	1.38	1.15	1.22	1.2	0.044	0.299
Long chain Fatty Acids (LCFA)						
C13	0.3ª	0.17 ^a	<0.1 ^b	<0.1 ^b	0.030	0.000
C14, miristat	2.19	1.85	2.3	1.68	0.063	0.054
C14:1	1.00	0.5	0.57	0.44	0.072	0.053
C15,	0.51	0.75	0.36	0.33	0.056	0.055
C15:1	0.34	0.23	0.16	0.21	0.025	0.05
C16, palmitat	22.03 ^b	29.34 ^a	29.23ª	31.14 ^a	0.854	0.000
C16:1, n7	1.12 ^b	1.04 ^b	1.36 ^{ab}	1.5 ^a	0.058	0.00
C17	0.39	0.23	0.23	0.28	0.025	0.052
C17:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18, stearate	40.13 ^a	30.74 ^b	23.17 ^b	21.5 ^b	2.198	0.002
trans 11 C18:1	12.55 ^c	17.84 ^b	26.16 ^a	28.05ª	1.476	0.834
cis 9 C18:1, oleat	1.09 ^b	1.43 ^b	1.99 ^a	1.83 ^a	0.099	0.00
C18:2	1.04 ^c	1.31 ^{bc}	1.6 ^{ab}	1.86 ^a	0.084	0.00
C18:3	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18:3, omega 6	0.22 ^b	0.26 ^b	0.45 ^a	0.53 ^a	0.032	0.000
C18:3,gamma linolenat	0.79 ^a	<0.1 ^c	0.38 ^b	0.41 ^b	0.064	0.00
C20	1.31	0.83	0.64	0.67	0.050	0.053
cis 11 C20:1	0.16 ^b	0.59ª	0.31 ^b	0.23 ^b	0.041	0.000
cis 11-14 C20:2	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C20:3	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C20:4, arakidonat	0.48^{a}	$< 0.1^{b}$	$< 0.1^{b}$	$< 0.1^{b}$	0.048	0.00
C20:5, EPA	0.07°	0.55 ^b	0.59 ^b	0.76 ^{ab}	0.069	0.00
C21	1.38	0.31	0.2	0.26	0.017	0.00
C22, behenate	0.94 ^a	0.43 ^{ab}	0.23 ^b	0.25 ^b	0.042	0.050
C22:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C22:6, DHA	3.19 ^b	4.81 ^a	4.57 ^a	4.42 ^a	0.159	0.00
C24	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C24:1, nervonat omega 9	< 0.1	< 0.1	< 0.1	< 0.1	-	-

a,b different superscripts at the same column indicate significant differences (P<0.05).

 $T_0 = basal diet without supplementation; T_1 = basal diet+5\% palm oil; T_2 = basal$

diet+partially ZPOS (3.75% ZPOS+1.25%PO); T3= basal diet+5% ZPOS

662

663

Table 6. Proportion of short chain, long chain, saturated and unsaturated fatty acids in
 rumen liquid due with supplemented of zinc soap palm Oil (ZPOS) In Vitro 664

Fatty Agida		Treatment				n Value
Fatty Acids	T0	T1	T2	T3	SEM	p-Value
		%				
Amount of fatty acids :						
SCFA	7.34 ^a	5.34 ^b	5.27 ^b	2.36 ^c	0.453	0.000
MCFA	1.38 ^a	1.15 ^b	1.22 ^b	1.2 ^b	0.028	0.009
LCFA	91.23°	93.41 ^b	93.50 ^b	96.35ª	0.443	0.000
SFA	77.9 ^a	71.14 ^b	61.85°	59.67°	1.766	0.000
USFA	22.05°	28.76 ^b	38.14 ^a	40.24 ^a	1.722	0.000
MUFA	16.26 ^c	21.63 ^b	30.55 ^a	32.26 ^a	1.531	0.000
PUFA	5.79°	7.13 ^b	7.59ª	7.98ª	0.201	0.000

665 ^{a,b} different superscripts at the same column indicate significant differences (P<0.05).

SA= short chain fatty acids, LA= long chain fatty acids, SFA= saturated fatty acids, 666

UFA= unsaturated fatty acids (UFA), MUFA= monounsaturated fatty acids, dan PUFA= 667 polyunsaturated fatty acids. 668

T0= basal diet without supplementation; T1= basal diet+5% palm oil; T2= basal 669

diet+partially ZPOS (3.75% ZPOS+1.25%PO); T3= basal diet+5% ZPOS 670

[TASJ] New notification from Tropical Animal Science Journal

Prof. Dr. Komang G Wiryawan <jurnal@apps.ipb.ac.id> Reply-To: "Prof. Dr. Ir. Komang G. Wiryawan" <kgwiryawan@yahoo.com> To: Dr Anis Muktiani <anismuktiani@gmail.com> Fri, Aug 9, 2024 at 8:53 AM

You have a new notification from Tropical Animal Science Journal:

You have been added to a discussion titled "Copyediting review request" regarding the submission "Supplementation of Zinc Soap Palm Oil Improves Feed Fermentability and Unsaturated Fatty Acid Profile in Rumen Liquid".

Link: https://journal.ipb.ac.id/index.php/tasj/authorDashboard/submission/56357

Prof. Dr. Ir. Komang G. Wiryawan

Journal http://journal.ipb.ac.id/index.php/tasj

Tropical Animal Science

1	Supplementation of Zinc Palm Oil Soap Improves Feed Fermentability and	
2	Unsaturated Fatty Acid Profile in Rumen Liquid	
3		
4	A. Muktiani*, W. Widiyanto, & N. S. Pandupuspitasari	
5	Faculty of Animal and Agricultural Science, Diponegoro University	
6	Jalan Prof. Jacup Rais, Kampus Universitas Diponegoro, Semarang 65145, Indonesia	
7	*Corresponding author: anismuktiani@lecturer.undip.ac.id	
8		
9	ABSTRACT	
10	This study aimed to evaluate the effects of energy and organic zinc supplements,	
11	specifically zinc palm oil soap (ZPOS), on fermentability and unsaturated fatty acid	
12	profiles in vitro. The study used a completely randomized design with 4 treatments and 5	
13	replications. The treatments were: T0 (basal diet without supplementation), T1 (basal diet	
14	+ 5% palm oil, PO), T2 (basal diet + 5% partially ZPOS: 3.75% ZPOS + 1.25% PO), and	
15	T3 (basal diet + 5% ZPOS). The inoculum source was rumen liquid from three fistulated	
16	female dairy goats and was homogenized. The goats were fed ration consisted of corn	
17	straw, soybean hulls, and concentrate (TDN 63%, CP 14%, NDF 35%). Results showed	
18	that both partial and full ZPOS supplementation (T2 and T3) resulted in higher VFA and	
19	microbial protein production and lower NH3 levels compared to the control (p<0.05).	
20	Partial ZPOS supplementation (T2) resulted in DM, OM, and CP digestibility that was	
21	similar among the treatments, but the digestibility of EE, CF, NDF, and ADF was	
22	significantly higher than another treatment (p<0.05). ZPOS supplementation resulted in	
23	higher acetate and propionate levels than the control and supplementation of 5% palm oil	
24	(p<0.05) but did not affect butyrate, reducing the A/P ratio and methane production. The	

Commented [mp1]: What do you mean with 5% parrtially ZPOS? Why used this treatment?

Commented [mp2]: All of abbreviations, ie TDN, CP, NDF, VFA, please define first

Commented [mp3]: Please use a clear statement. Does the treatment increase or decrease the variable observed?

25	PO treatment was dominated by stearate (C18:0), whereas the ZPOS treatments showed	
26	higher levels of trans 11 C18:1, eicosapentaenoic acid (EPA), and docosahexaenoic acid	
27	(DHA) compared to the control. In conclusion, adding protected palm oil in the form of	
28	zinc soap enhances fermentability, digestibility, and monounsaturated fatty acid (MUFA)	Commented [mp4]: which level?? Please state clearly.
29	content in rumen liquid.	
30	Keywords: fermentability; palm oil soap; unsaturated fatty acid ruminal; zinc	
31		
32	INTRODUCTION	
33	Early lactation dairy cows experience negative energy balance due to the	
34	decreased dry matter intake (DMI). Energy requirements can be two to three times higher	
35	than basic maintenance needs because they are used for tissue maintenance after birth and	
36	milk production (Khotijah et al., 2017). Energy deficiency has detrimental effects,	Commented [mp5]: Please check again, Do Khotijah et al. state their research about dairy?
37	including low production and weight loss in livestock (Tribout et al., 2023). To address	
38	this challenge, especially during early lactation, providing additional energy sources	
39	through supplements is crucial.	
40	Energy requirements of dairy livestock in tropical regions differ from those in	
41	temperate areas due to varying environmental conditions and feed resources. Assessment	
42	of the energy balance of tropical and temperate crossbred dairy cows revealed significant	
43	differences in serum metabolic profiles, indicating variations in energy utilization and	
44	metabolism between the two regions (Ranaweera et al., 2020). Meta-analysis research by	
45	Oliveira (2015) found that tropical dairy cows (Bos taurus x Bos indicus) have lower	
46	MEm requirements and net energy efficiency for milk production is also lower than	
47	temperate dairy cattle (Bos taurus). Therefore, understanding these differences is very	

48 important to optimize feeding strategies, especially energy source supplementation in49 dairy livestock.

Palm oil is one of the most promising vegetable oils for energy sources, with a 50 51 gross energy (GE) content of 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is also 52 easily obtainable, resistant to rancidity, and affordable. The global price of palm oil is 53 \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/mt, coconut oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains high 54 levels of unsaturated fatty acids, specifically oleic acid at 39.2% (Mancini et al., 2015). 55 High levels of palmitate are very beneficial for cellulolytic bacteria. Cellulolytic bacteria 56 57 can incorporate palmitic acid into their cell membranes, thereby increasing energy availability for metabolic processes. Recent findings by Sears et al. (2024) showed an 58 increase in *Prevotella* and *Fibrobacter* populations in response to palmitic acid 59 60 supplementation. Unsaturated fatty acids contribute to energy efficiency by reducing protozoa (Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane (CH4) 61 62 production and the acetate/propionate (A/P) ratio by increasing propionate production 63 (Gao et al., 2016).

However, oil supplementation also has negative effects. Fat particles tend to coat
feed particles, which hinders the adhesion of rumen microbes, especially fibro lytic
microbes, thus reducing fiber digestibility (Sears *et al.*, 2024). Rumen microbes defend
against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty
acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014).

Palm oil used in animal feed must be protected to prevent biohydrogenation and
to avoid disrupting rumen bacterial fermentation. It is essential to safeguard

71 polyunsaturated fatty acids to preserve their biological roles, such as being structural

Commented [mp6]: Palmitic acid is saturated fatty acid, not unsaturated fatty acid?

Commented [mp7]: Palm oil rich in saturated fatty acid, so no need to prevent from biohydrogenation??

72 components of bio membranes that uphold membrane integrity. Polyunsaturated fatty 73 acids in bio membranes ensure membrane fluidity, which supports the activity of 74 membrane-bound enzymes, facilitates intracellular metabolism, and enhances nutrient 75 utilization efficiency in livestock (Pereira *et al.*, 2022).

One effective method is saponification, which involves binding the free carboxyl groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is commonly used for this purpose (Satir *et al.*, 2023; Vargas-bello-p *et al.*, 2020). In addition to Ca, NaOH can also be used to protect the oil (Wulandari *et al.*, 2020). However, the use of zinc (Zn) minerals for this purpose has not been widely explored.

81 Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 enzymes, and acts as a structural component in gene expression and signal transduction 82 (Franco et al., 2024). Zn is also a major component of metalloenzymes, lactate 83 84 dehydrogenase, carboxypeptidase, and DNA and RNA polymerase, which play a role in protein synthesis (Sloup et al., 2017). Studies in vitro observed that supplementing Zn in 85 ruminal fluid increased cellulose digestibility (Martínez & Church, 1970) and 86 concentrations of total volatile fatty acids (VFA) and acetate (Chen et al., 2019). Research 87 88 by Wang et al. (2021) found that supplementation of 20-30mg/kg DM Zn sulfate led to increase nutrient digestibility and ruminal fermentation. 89

In livestock, Zn is involved in multiple biochemical functions such as bone
metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and
spermatogenesis, immune function, and appetite regulation via its effects on the central
nervous system (Duffy *et al.*, 2023). The most important of Zn are cellular respiration,
cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane
integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup

et al., 2017). The use of Zn as an oil protector has a double benefit, namely protecting
unsaturated fatty acids from the biohydrogenation process of rumen microbes while
providing Zn needed for rumen microbes and livestock, whose needs increase in the early
stages of lactation.

100 In vitro Zn soap supplementation research was conducted by Faizah et al. (2019), which compared the supplementation of 10% Zn soap from palm oil with 10% corn. 101 Supplementation with 10% palm oil Zn soap resulted in no different digestibility of dry 102 matter, organic matter, and crude fiber, but the total production of VFA, acetate, and A/P 103 ratio was higher compared to corn oil Zn soap. High acetate levels strongly support the 104 105 synthesis of milk fatty acids in dairy cows, especially short-chain fatty acids. However, no research has explored the contribution of long-chain fatty acids, MUFA, and PUFA 106 due to Zn soap supplementation as a precursor for the synthesis of long fatty acids and 107 108 unsaturated fatty acids in milk. This study's results provided information regarding the concentration of long-chain fatty acids, MUFA and PUFA in the rumen due to Zn soap 109 110 supplementation, which is expected to be used as a consideration in providing unsaturated fatty acids to increase production and health of dairy livestock. 111

This study aimed to evaluate the effects of energy and organic Zn supplements, specifically Zn palm oil soap (ZPOS), on fermentability, digestibility, and unsaturated fatty acid profiles *in vitro*. The benefit of this research is identifying the most efficient form of palm oil supplementation to increase energy supply and improve the profile of unsaturated fatty acids in the rumen without disrupting feed fermentability *in vitro*. Discovery of the most effective use of palm oil in providing an alternative solution to energy and Zn deficiencies in dairy cattle.

120	MATERIALS AND METHODS
121	Zinc Soap and Feed Preparation
122	The preparation of Zn soap was carried out according to Cabatit (1979). The palm
123	oil used to make Zn soap was a commercial palm oil that was generally sold on the market.
124	The zinc soap of palm oil was made based on saponification number. Palm oil is measured
125	for its saponification number and the KOH added is proportional to the saponification
126	number. In order to protect palm oil, zinc chloride (ZnCl2) is added in an amount equal
127	to the KOH required to soak the oil, which is determined by the outcomes of reaction
128	stoichiometric calculations. Palm oil was put into a glass beaker and incubated in a water
129	bath at 90 °C. KOH that has been dissolved in ethanol is added to hot oil and stirred until
130	the oil is completely hydrolyzed. Next, the ZnCl2 solution was added and mix
131	continuously until a paste forms. The final step is to remove the remaining KOH by
132	adding water and washing using a centrifuge. This process produces cream soap called
133	zinc palm oil soap (ZPOS). The nutrient content of ZPOS is 24.36% ether extract, 4.2%
134	crude fiber, 4.94% Zn, and gross energy 5257 kcal/kg.
135	The feed consists of forage and concentrates that have been formulated for feeding
136	lactating dairy goats with a content of crude protein (CP) of 14% and total digestible
137	nutrients (TDN) of 63%. The feed was composed of corn straw, soybean hulls, rice bran,
138	pollard, cassava waste meal, coconut meal, soybean meal, and molasses. The composition
139	of ingredients and nutrient content of the ration are shown in Table 1.
140	In Vitro Experiment
141	The experiment was designed using a completely randomized design with four
142	treatments and five replications. The treatments tested were TO= basal diet without
143	supplementation, T1= basal diet + 5% palm oil (PO), T2= basal diet + 5% partially ZPOS

146	Animal and Agricultural Sciences Diponegoro University, and were homogenized. The	
147	goats were given a dietary trial following the ration for <i>in vitro</i> substrate for one week	
148	before rumen liquid was collected. Rumen liquid was collected before morning feeding	
149	from a fistulated rumen. The rumen liquid was filtered using cheese cloth and placed into	
150	a 39 °C flask under anaerobic conditions.	
151	In vitro experiments were carried out according to the method of Tilley & Terry	
152	(1963). In the fermenter tube, 0.55 g of feed samples from each treatment were added,	
153	followed by 40 mL of McDaugall's solution and 10 mL of rumen liquid. The fermenter	
154	cylinder was flowed by CO2 gas and closed to anaerobic conditions. The fermenter tube	
155	was incubated at a 39 $^{\circ}$ C water temperature.	
156	Nutrient Digestibility	
157	The digestibility of nutrients, including dry matter (DMD), organic matter	
158	(OMD), crude protein (CPD), ether extract (EED), and crude fiber (CFD) were measured	
159	through two stages of incubation, namely fermentative and enzymatic. In the first stage,	
160	the fermenter tube was incubated at 39 $^{\circ}\text{C}$ water temperature for 2x24 hours, and the	
161	process was stopped by immersing the fermenter tube in ice water for 20 minutes. Then,	
162	the tube was centrifuged for 15 minutes at a speed of 3,000 rpm, and the supernatant was	
	are table was continuaged for 15 minutes at a speed of 5,000 rpm, and the supermatant was	
163	discarded. In the second stage, the HCL pepsin solution was added 50 mL into the tube	Commented [mp10]: HCl??
163 164		Commented [mp10]: HCl??
	discarded. In the second stage, the HCL pepsin solution was added 50 mL into the tube	Commented [mp10]: HCl??

to calculate nutrient digestibility values. Fermentation is also carried out without feed

(3.75% ZPOS + 1.25% PO), and T3= basal diet + 5% ZPOS. Rumen liquid as a source

of inoculum was taken from three female goats with fistulas that belong to the Faculty of

144

145

167

Commented [mp9]: What is the consideration of this proportion?

168	samples, which are called blanks. Nutrient digestibility samples are calculated by the		
169	formula:		
170	Nutrient digestibility (%)		
171	$=\frac{(\text{Nutrient sample, g} - (\text{Nutrient residue, g} - \text{Nutrient blank, g})}{\text{Nutrient sample, g}}x100$		
172			
173	pH Value, VFA, NH3, and Methane Production	Commented [mp11]: NI	<mark></mark>
174	The process of measuring pH, VFA, and NH3 followed the same procedure as that		
175	for nutrient digestibility, but the fermentation stopped at the 4-hour mark. After		
176	centrifuging the fermenter tube at 3,000 rpm for 15 minutes, the supernatant was taken to		
177	measure the rumen pH, NH3, and total and partial VFA concentrations. A digital pH		
178	meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample		
179	was tested three times. NH3 levels were determined using a spectrophotometer,		
180	employing a spectrophotometric method based on the catalyzed endophenol reaction to		
181	form a stable blue compound (Chaney & Marbach, 1962). Cottyn & Boucque (1968)		
182	reported that gas chromatography was used to quantify the generation of partial VFAs		
183	(acetic acid, propionate, and butyrate). A milliliter of 95%-97% H2SO4 was combined		
184	with a 10 mL incubation sample. A milliliter of the sample combination was mixed with		
185	0.0003 g of dehydrated sulfosalicylate. After that, the mixture was centrifuged for 10		
186	minutes at 7 °C at 12,000 rpm. The samples were ready for gas chromatography		
187	identification.		
188	The methane gas concentration and energy conversion efficiency were determined		
189	by calculating the VFA stoichiometry, which was the estimation using the formula of		
190	Orskov & Ryle (1990). The formula used for methane concentration was: Methane (mM)		
191	= 0.5 (% Acetate) - 0.25 (% Propionate) + 0.5 (% Butyrate). Energy conversion efficiency	Commented [mp12]: Ple	ease c

Commented [mp12]: Please check again the formula using Moss et al (2002)??

192	was calculated based on the stoichiometry of the carbohydrate fermentation reaction from	
193	hexose to VFA (acetate, propionate, and butyrate). The calculation formula used was:	Commented [mp13]: what is the reference
194	E (%) = $\frac{(0.622 \text{ pA} + 1.091 \text{ pP} + 1.558 \text{ pB})}{\text{pA} + \text{pP} + 2\text{pB}}x100$	
195		
196	Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid	
197	To calculate protozoa, microbial protein and fatty acid concentrations in the rumen	
198	liquid, the fermentation process was carried out for 24 hours. The populations of protozoa	
199	were calculated following the procedures of Ogimoto & Imai (1981). The solution used	Commented [mp14]: How is the formula?
200	was methyl formalin saline, made from a mixture of 100 mL 35% formaldehyde, 2 g	
201	trypan blue, 9 g NaCl, and 900 mL distilled water. The number of protozoa was calculated	
202	by using a microscope at magnification 100 times. Measurement of rumen liquid protein	
203	microbes using the method of Makkar et al. (1982) on the principle of gradual	
204	centrifugation. The fatty acid profile of rumen liquid was analyzed using a gas	
205	chromatograph (Model GC-14A, Shimadzu Corporation, Kyoto, Japan). Samples were	
206	stored at -20 °C until analysis. Following the method of Cocks & Rede (1966), the fatty	
207	acid composition was determined by converting oil to fatty acid methyl esters. This	
208	involved adding 950 μL of n-hexane, 50 mg of oil, and 50 μL of sodium methoxide. The	
209	peaks of the fatty acid methyl esters were identified by comparing their retention times	
210	with those of authentic standards. The relative percentage of each fatty acid was	
211	calculated based on its peak area relative to the total peak area of all fatty acids in the	
212	sample. Fatty acids were categorized into short-chain fatty acids (SCFA) as having fewer	
213	than six carbon atoms, medium chain fatty acids (MCFA) ranging from C6 to C12, and	
214	long-chain fatty acids (LCFA), which are greater than C12 (Wang et al., 2020).	
215		

np13]: what is the reference?

216	Statistical Analysis	
217	The data were analyzed using a completely randomized design in SPSS 16.	
218	Duncan's Multiple Range Test with significance was set at p<0.05 to compare treatments	
219	when a significant effect was observed.	
220		
221	RESULTS	
222	Feed Fermentability	Commented [mp15]: In Rumen ??
223		Commented [mp16]: Please describe the results to the point and how they affect the treatment of the observed variables.
224	The fermentability of feed is determined by various factors such as pH, total	
225	protozoa count, microbial protein content, NH3 concentration, and total VFA production	
226	in rumen liquid. These parameters are detailed in Table 2. The pH levels across all	
227	treatments fell within the normal range of 6.75-6.82. While the treatment did not	
228	significantly affect pH (p>0.05), notable differences (p<0.05) were observed in the total	 Commented [mp17]: what treatment? Please specify the treatment
229	protozoa count, microbial protein content, total VFA, and NH3 concentrations. Palm oil	
230	supplementation had the most pronounced impact, notably reducing protozoa count and	
231	microbial protein. When ZPOS protection was partially supplemented (T2), it led to	
232	higher microbial protein and VFA production compared to feed supplemented with total	
233	ZPOS, although the difference was not significant.	
234	Feed Digestibility	 Commented [mp18]: Nutrient Digestibility ??
235		Commented [mp19]: Please describe the results to the point and how they affect the treatment of the observed variables.
236	Table 3 presents the feed digestibility results from the ZPOS supplementation	
237	treatment. Statistical analysis revealed no significant differences in the digestibility of dry	
238	matter (DMD), organic matter (OMD), and crude protein (CPD) due to the palm oil Zn	
239	soap treatment. However, there were significant differences (p<0.05) in the digestibility	Commented [mp20]: Please state directly which treatment that has significant effect on the variable, and is it increase or decrease??

of ether extract (EED), crude fiber (CFD), neutral detergent fiber (NDFD), and acid
detergent fiber (ADFD). Both non-protected and protected palm oil increased EED.
Improvements in fiber digestibility (CFD, NDFD, and ADFD) were only observed with
zinc soap supplementation (T2 and T3), whereas non-protected palm oil showed no
difference from the control. The highest fiber digestibility was achieved with partial Zn
soap supplementation (T2), though it was not significantly different from the total
protection Zn soap supplementation (T3).

247

Relative Proportion of VFA

Palm oil (PO and ZPOS) supplementation significantly influenced (p<0.05) the 248 249 partial VFA production of acetate, propionate, butyrate, the A/P ratio, and methane, but did not impact the efficiency of hexose energy conversion into VFA. The relative 250 proportion of VFAs in this study was 59%-62% acetic acid, 24%-29% propionic acid, 251 252 and 12%-13% butyric acid. According to Duncan's multiple range test results, both partial (T2) and total (T3) ZPOS supplementation resulted in higher levels of acetate, propionate, 253 and butyrate compared to PO supplementation (T1) and the control (T0). Conversely, PO 254 and ZSPO supplementation produced a lower A/P ratio. The estimated methane 255 production also decreased with PO and ZPOS supplementation. 256

257

Fatty Acids in Rumen Liquid

Table 5 outlines the fatty acid composition in rumen liquid. The control diet primarily contained short-chain fatty acids (SCFA), with a notably higher concentration of C4 compared to the other treatments (p<0.05). Supplementation with palm oil (PO and ZPOS) led to the increased levels of palmitate (C16:0), stearate (C18:0), and oleate (C18:1) relative to the control (p<0.05). However, the proportion of stearate was significantly lower with ZPOS supplementation (p<0.05). Unsaturated fatty acids, Commented [mp21]: at what level....??

Commented [mp22]: increased

Commented [mp23]: Please describe the results to the point and how they affect the treatment of the observed variables.

particularly cis-9 18:1, trans-11 18:1, linoleate (18:2), linolenic acid (18:3), EPA (20:5),
and DHA (C22:6), showed a significant increase in the 3.75% ZPOS (T2) and 5% ZPOS
(T3) treatments (p<0.05).

These fatty acids are classified into various categories, including short-chain fatty 267 acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs), 268 saturated fatty acids (SFAs), unsaturated fatty acids (USFAs), monounsaturated fatty 269 acids (MUFAs), and polyunsaturated fatty acids (PUFAs). According to Table 6, the 270 control diet exhibited a higher total content of SCFAs compared to the diets supplemented 271 with PO and ZPOS (p<0.05) but produced a lower amount of LCFA. SFAs showed higher 272 273 in control and PO supplementation, whereas ZPOS supplementation demonstrated an ability to elevate USFAs. Notably, the 3.75% ZPOS and 5% ZPOS supplementation 274 resulted in higher levels of MUFAs and PUFAs than the other treatments. 275

276

277 278

DISCUSSION

Feed Fermentability

The pH is one of the crucial factors in assessing rumen health. The findings 279 280 indicated that adding palm oil and protected palm oil Zn soap did not disrupt the rumen fermentation process. Similar results have been reported in the other studies, such as those 281 282 conducted by Adeyemi et al. (2015), Amanullah et al. (2022), and Roy et al. (2017). The reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil, 283 particularly lauric acid. According to Rahman et al. (2022), palm oil typically contains 284 285 about 44% lauric acid (C12:0). Lauric acid is known to have antiprotozoal properties, which can potentially disrupt protozoan cell membranes and inhibit their growth (Santos 286 et al., 2022). 287

Commented [mp24]: Why palm oil did not disrupt the rumen pH?? Please describe the reason.

Commented [mp25]: What the correlation with pH value??

Ibrahim et al. (2021) discovered that supplementing with palm oil altered the 288 289 rumen microbial population in ruminants, potentially affecting their overall protein synthesis capability. Sears et al. (2024) reported that oleic acid significantly reduces 290 Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids 291 292 could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting in the decreased protein synthesis. The use of ZPOS protection, both partially (T2) and 293 fully (T3), can mitigate the harmful effects of unsaturated fatty acids, enabling microbes 294 to develop as effectively as in the control group. 295 Yanza et al. (2021) found that ruminants given protected medium chain fatty acids 296 297 (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to the 298 increased propionate production. Propionate is formed from the breakdown of glycerol 299 300 during fat hydrolysis. The NH3 concentration in the T2 treatment was the lowest among all treatments, while microbial protein production was the highest. This indicates that 301 302 NH3 is utilized for microbial protein synthesis (Getabalew & Negash, 2020). Feed Digestibility 303 The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were 304 unaffected by 5% non-protected ZPOS supplementation, indicating that this level of 305 306 supplementation is safe for rumen microbial growth. These results are consistent with 307 previous research, which found that 6% supplementation with vegetable oils (olive oil, sunflower oil, and linseed oil) yielded OMD, NDFD, and ADFD values comparable to 308 the control, although linseed oil resulted in higher digestibility than sunflower oil 309 (Vargas-bello-p et al., 2020). The effect of oil supplementation on digestibility is highly 310 dependent on the nutrient composition of the feed and the fatty acid profile of the oil. The 311

Commented [mp26]: Does palm oil rich in Unsaturated fatty acid or oleic acid? Please use the relevant references.

Commented [mp27]: Nurient Digestibility ??

Commented [mp28]: What do you mean by 5% Non-protected ZPOS? Does ZPOS mean protected zinc palm oil?

Commented [mp29]: If palm oil at level 5% is safe for nutrient digestibility, does it mean there is no need to be protected??

experimental feed in this study, characterized by high fiber content and low ADF (13.77%), supports the proliferation of cellulolytic microbes. A high-fiber diet may mitigate the potential negative impact of oil on fiber digestion by rumen microbes (Benchaar *et al.*, 2015). Both non-protected (T1) and protected (T2 and T3) palm oil increased EED, supporting the conclusion that palm oil can be used as an energy supplement without compromising rumen feed fermentability.

A notable finding from this research is that both partial and total Zn soap 318 supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and 319 ADFD. This effect is likely due to the fat and Zn content in palm oil. Palm oil contains 320 321 high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki et al., 2015). Research by Sears et al. (2024) indicates an increase in Prevotella and Fibrobacter 322 populations in response to palmitic acid supplementation. This suggests that cellulolytic 323 324 bacteria can incorporate palmitic acid into their cell membranes, thereby increasing energy availability for metabolic processes. Furthermore, Zn is crucial for various 325 326 metabolic functions in rumen microbes.

327 Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain et 328 al., 2016; Uniyal et al., 2017). It is indispensable for preserving the structural and 329 330 functional integrity of over 2000 transcription factors and 300 enzymes. It can be contended that virtually all metabolic pathways are reliant, to varying degrees, on at least 331 one Zn-dependent protein (Ranasinghe et al., 2015). Recent research by Fellner et al. 332 333 (2021) elucidated that Zn supplementation precipitated increased acetate production and a heightened acetate/propionate ratio. This delineates an augmented fiber digestion 334 process facilitated by cellulolytic bacteria, consequent to heightened microbial protein 335

synthesis. This conclusion aligns with findings indicating elevated levels of microbial
protein compared to PO supplementation (P1), specifically 13.37 (T2) and 11.41 (T3)
versus 9.37 mg/ml in the P1 treatment (Table 3).

339

Relative Proportion of VFA

The relative proportion of acetate observed is slightly lower than that reported by 340 Anzhany et al. (2024), which ranged from 69% to 72%, while the proportions of 341 propionate and butyrate are comparatively higher. According to Amanullah et al. (2022), 342 palm oil supplementation modifies the rumen environment, thereby altering the ratio of 343 cellulolytic to amylolytic microbes. Both partial and total ZPOS supplementation resulted 344 345 in significantly higher acetate production compared to non-protected palm oil (p<0.05). These findings are consistent with the increased microbial protein levels observed with 346 347 ZPOS supplementation, suggesting enhanced bacterial growth. Zinc (Zn) is an essential 348 trace mineral that functions as a cofactor for over 300 enzymes, including DNA and RNA polymerase, which play a role in protein synthesis (Franco et al., 2024; Sloup et al., 2017). 349 350 The increase in propionate in the ZPOS supplementation treatment resulted from 351 the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated 352 fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids 353 354 from rumen bio-hydrogenation and increasing the duodenal flows of mono and polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with 355 studies showing that ZPOS supplementation leads to an increase in protozoan populations 356 (Table 4). Zn supplementation has been associated with shifts in rumen volatile fatty acid 357 358 profiles, notably an increase in propionate and a reduction in the acetate-to-propionate ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane production and a 359

Commented [mp30]: Please describe first why it is happening???

360	lower A/P ratio is advantageous, as higher propionate levels provide a carbon framework	
361	and synthetic energy for livestock.	
362	Fatty Acids in Rumen Liquid	
363	Previous research showed that oil supplementation caused a decrease in the	
364	proportion of short-chain fatty acids in rumen fluid while increasing the presence of long-	
365	chain fatty acids. Mancini et al. (2015) argue that this transition is caused by the large	
366	number of long-chain fatty acids (LSFA) in palm oil, namely 98.3%, and the remaining	
367	1.7% consists of short-chain fatty acids (SCFA). Among long-chain fatty acids, which	
368	account for 98.3% of the total, almost half (49.9%) are unsaturated fatty acids (USFA),	
369	consisting of 39.2% monounsaturated fatty acids (MUFA) and 10 .5% polyunsaturated	
370	fatty acids (PUFA). The prevalence of saturated fatty acids (SFA) in palm oil contributes	
371	to the range of rumen saturated fatty acid levels, where PO supplementation treatment	
372	(T1) has higher SFA levels compared to ZPOS supplementation, namely T1 71.14%, T2	
373	61.85%, and T3 59.67% (Table 6).	
374	Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities,	
375	namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and	
376	glycerol. Unsaturated fatty acids, including oleic acid (18:1), undergo a biohydrogenation	
377	process, being converted into saturated fatty acids, stearic acid (18:0), in the rumen by	
378	bacteria (Buccioni et al., 2012). Harvatine et al. (2009), who tracked the	
379	biohydrogenation process of oleic acid, found that oleate in the rumen can change into	
380	trans and cis forms because rumen microbes produce cis/trans isomerase enzymes, and	
381	there is an isomerase that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate)	

to trans 18:1. The dominant biohydrogenation process that occurs in the rumen is bacteria

hydrogenate polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 383 384 fatty acids, then trans 18:1 fatty acids into stearic acid (18:0). Consistent with our study's findings, supplementation with ZPOS (T2 and T3) 385 resulted in elevated levels of trans18:1 and cis 18:1, alongside reduced stearate (18:0) 386 concentrations compared to non-protected oil supplementation (T1). Amanullah et al. 387 (2022) conducted a comparative analysis involving corn oil, linseed oil, and Ca salt 388 (protected C18:2n-6), revealing that protected fatty acids (Ca Salt) led to diminished 389 stearate levels but higher proportions of MUFA and PUFA. These findings are consistent 390 with the research by Satir et al. (2023), which demonstrated that 3% protected palm oil 391 392 supplementation can increase the content of palmitic acid (SFA) and oleic acid (MUFA). Stearate is the final product of the biohydrogenation of oleic, linoleic, and linolenic acids. 393 This indicates a complete inhibition of the biohydrogenation process in the ZPOS 394 395 treatment. The protection of polyunsaturated fatty acids through saponification involves bonding the carboxyl group with Zn, resulting in the inhibition of isomerization, which is 396 397 a prerequisite for the hydrogenation of unsaturated fatty acids into saturated fatty acids. This is reflected in the higher proportion of MUFA in the ZPOS treatment compared to 398 PO and the control (Table 6). The substantial presence of PUFA, notably EPA and DHA, 399 underscores Zn's role in the elongation and desaturation process, facilitated by the 400 401 formation of arachidonic acid (20:4) through delta-6-desaturase (D6D) and delta-5desaturase (D5D) enzymes (Ridgway, 2016). Zn's indispensability is further highlighted 402 as a pivotal mineral cofactor for D6D and D5D enzymes (Noland & Drisko, 2020). 403 Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen, 404 particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic 405

acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock

406

407	products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZPOS	
408	supplementation holds the potential for enhancing the quality of meat and milk fat.	
409		
410	CONCLUSION	
411	Based on the results of this research, it can be concluded that zinc soap from palm	
412	oil (ZPOS) can be developed as a source of energy and organic Zn. Its supplementation	
413	in feed by as much as 5% has beneficial effects, namely increasing fermentability,	
414	MUFA, EPA, and DHA in the rumen. It was indicated that partial supplementation of	
415	ZPOS (3.75% ZPOS+1.25%PO) resulted in higher protozoa populations and fiber	
416	digestibility. Further investigation is required to test the ZPOS on dairy cows in vivo.	Commented [mp31]: In conclusion, Which level suggested the best treatment: 5% ZPOS or Partial ZPOS??
417		
418	CONFLICT OF INTEREST	
419	The authors declare that there is no conflict of interest with any financial, personal,	
420	or other relationships with other people or organizations related to the material discussed	
421	in the manuscript.	
422		
423	ACKNOWLEDGEMENT	
424	The research was funded by the Faculty of Animal and Agricultural Science,	
425	Diponegoro University.	Commented [mp32]: Please add the contract number and the year of the project.
426		
427	REFERENCES	
428	Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A.	
429	Karsani, & A. Q. Sazili. 2015. Influence of Carotino oil on in vitro rumen	
430	fermentation, metabolism and apparent biohydrogenation of fatty acids. Anim. Sci.	

431	J. 86:270–278. <u>https://doi.org/10.1111/asj.12279</u>	
432	Amanullah, S. M., S. Lee, D. Hand, Vi. Paradhipta, Y. Joo, D. Kim, P. Seong, S.	
433	Jeong, & S. Kim. 2022. Impact of oil sources on in vitro fermentation, microbes,	
434	greenhouse gas, and fatty acid profile in the rumen. Fermentation 8:242.	
435	https://doi.org/10.3390/fermentation8050242	
436	Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid biohydrogenation,	
437	fermentation, and digestibility of ration containing napier and king grass with	
438	different harvest ages and altitudes: In vitro study. Trop. Anim. Sci. J. 47:68-78.	
439	https://doi.org/10.5398/tasj.2024.47.1.68	
440	AOAC. 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical	
441	Chemists, Washington, DC.	
442	Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil	
443	supplementation to dairy cows fed diets based on red clover silage or corn silage:	
444	Effects on methane production, rumen fermentation, nutrient digestibility, n balance,	
445	and milk production. J. Dairy Sci. 98:7993-8008. https://doi.org/10.3168/jds.2015-	
446	<u>9398</u>	
447	Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid	
448	metabolism in the rumen: New insights on lipolysis and biohydrogenation with an	
449	emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 174:1-	
450	25. https://doi.org/10.1016/j.anifeedsci.2012.02.009	
451	Cabatit, B. C. 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press, Manila.	
452	Chaney, A. L. & E. P. Marbach. 1962. Modified reagents for determination of urea and	
453	ammonia. Clin. Chem. 8:130-132. https://doi.org/10.1093/clinchem/8.2.130	
454	Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of zinc-bearing	
455	palygorskite on rumen fermentation in vitro. Asian-Australas. J. Anim. Sci. 32:63-	

456	71. <u>https://doi.org/10.5713/ajas.17.0920</u>	
457	Cocks, L. V. & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis.	
458	Academic Press, London.	
459	Cottyn, B. G. & C. V. Boucque. 1968. Rapid method for the gas-chromatographic	
460	determination of volatile fatty acids in rumen fluid. J. Agric. Food Chem. 16:105-	
461	107. <u>https://doi.org/10.1021/jf60155a002</u>	
462	Duffy, R., M. Yin, & L. E. Redding. 2023. A review of the impact of dietary zinc on	
463	livestock health. J. Trace Elem. Miner. 5:100085.	
464	https://doi.org/10.1016/j.jtemin.2023.100085	
465	Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The effect of total or partial	
466	protected vegetable oil supplementation on <i>in vitro</i> digestibility, feed fermentability	
467	and energy efficiency. Buletin Peternakan 43:171–178.	
468	https://doi.org/10.21059/buletinpeternak.v43i3.43231	
469	Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of supplemental	
470	zinc on ruminal fermentation in continuous cultures. Appl. Anim. Sci. 37:27-32.	
471	https://doi.org/10.15232/aas.2020-02104	
472	Franco, C. E., E. L. Rients, F. E. Diaz, S. L. Hansen, & J. L. McGill. 2024. Dietary	
473	zinc supplementation in steers modulates labile zinc concentration and zinc	
474	transporter gene expression in circulating immune cells. Biol. Trace Elem. Res.	
475	https://doi.org/10.1007/s12011-024-04123-6	
476	Gao, J., M. Wang, Y. Jing, X. Sun, T. Wu, & L. Shi. 2016. Impacts of the unsaturation	
477	degree of long-chain fatty acids on the volatile fatty acid profiles of rumen microbial	
478	fermentation in goats in vitro. J. Integr. Agric. 15:2827–2833.	
479	https://doi.org/10.1016/S2095-3119(16)61418-1	

480 Getabalew, M. & A. Negash. 2020. Nitrogen metabolism and recycling in ruminant

481	animals : A review college of agricultural and natural resources science. Academic							
482	Journal Nutrition 9:29–38.							
483	Harvatine, K. J., Y. R. Boisclair, & D. E. Bauman. 2009. Recent advances in the							
484	regulation of milk fat synthesis. Animal 3:40–54.							
485	https://doi.org/10.1017/S1751731108003133							
486	Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The role of zinc, manganse							
487	and copper in rumen metabolism and immune function: A review article. Open J.							
488	Anim. Sci. 6:304–324. https://doi.org/10.4236/ojas.2016.64035							
489	Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, S. C. L. Candyrine, W.							
490	N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of							
491	vegetable oil supplementation on rumen fermentation and microbial population in							
492	ruminant: A review. Trop. Anim. Health Prod. 53:422.							
493	https://doi.org/10.1007/s11250-021-02863-4							
494	Khaskheli, A. A. & L. Chou. 2020. Evaluation of fatty acids composition, metabolizable							
495	energy, nutrients digestibility of crude palm oil fat crystals in Turkeys. Anim. Feed							
496	Sci. Technol. 270:114734. https://doi.org/10.1016/j.anifeedsci.2020.114734							
497	7 Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of							
498	sunflower oil supplementation as unsaturated fatty acid source on rumen							
499	fermentability and performance of lactating Garut ewes. J. Indones. Trop. Anim.							
500	Agric. 42:185–193. https://doi.org/10.14710/jitaa.42.3.185-193							
501	Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-chemical properties, fatty							
502	acid profile and nutrition in palm oil. J. Paramed. Sci. 6:117–134.							
503	Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple							
504	determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170-2173.							

505 https://doi.org/10.3168/jds.S0022-0302(82)82477-6

506 Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono.

- 507 2015. Biological and nutritional properties of palm oil and palmitic acid: Effects on
- 508 health. Molecules 20:17339–17361. https://doi.org/10.3390/molecules200917339
- 509 Martínez, A. & D. C. Church. 1970. Effect of various mineral rumen cellulose elements.

510 J. Anim. Sci. 31:982–990. https://doi.org/10.2527/jas1970.315982x

- 511 Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of different vegetable oils
- 512 on *in vitro* ruminal fermentability and nutrient digestibility in ettawah crossbred
- 513 goat. Anim. Prod. 21:22–29. <u>https://doi.org/10.20884/1.jap.2019.21.1.689</u>
- Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan.
 2015. The role of ciliate protozoa in the rumen. Fron. Microbiol. 6:1313.
- 516 <u>https://doi.org/10.3389/fmicb.2015.01313</u>
- 517 Noland, D. & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition Therapy.
- 518 In : L. Wagner (Eds). Humana Press, Switzerland. <u>https://doi.org/10.1007/978-3-030-</u>
 519 <u>30730-1</u>
- 520 Ogimoto, K. & S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Societies
 521 Press, Tokyo.
- 522 Oliveira, A. S. 2015. Meta-analysis of feeding trials to estimate energy requirements of
- dairy cows under tropical condition. Anim. Feed Sci. Technol. 210:94–103.
 https://doi.org/10.1016/j.anifeedsci.2015.10.006
- 525 Orskov, E. R. & M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied
 526 Science, London (UK).
- 527 Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui
- 528 J. B. Bessa, & L. Lopes-da-costa. 2022. Effects of feeding rumen-protected linseed
- 529 fat to postpartum dairy cows on plasma n-3 polyunsaturated fatty acid concentrations
- and metabolic and reproductive parameters. J. Dairy Sci. 105:361–374.

531	https://doi.org/10.3168/jds.2021-20674					
532	Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The composition of fatty					
533	acids in several vegetable oils from Indonesia. Biodiversitas 23:2167-2176.					
534	https://doi.org/10.13057/biodiv/d230452					
535	Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P.					
536	Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of zinc					
537	supplementation on serum lipids: A systematic review and meta-analysis. Nutr.					
538	Metab. 12:26. https://doi.org/10.1186/s12986-015-0023-4					
539	Ranaweera, K. K. T. N., M. B. P. K. Mahipala, & W. M. P. B. Weerasinghe. 2020.					
540	Evaluation of energy balance in tropical and temperate crossbred dairy cows at post-					
541	partum transition stage: A case study. Trop. Agric. Res. 31:12-20.					
542	https://doi.org/10.4038/tar.v31i2.8363					
543	Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. In R.S.					
544	McLeod (Eds). Elsevier, Netherland.					
545	Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of different vegetable oils on rumen					
546	fermentation and conjugated linoleic acid concentration in vitro. Vet. World 10:11-					
547	16. <u>https://doi.org/10.14202/vetworld.2017.11-16</u>					
548	Santos, F. A., G. S. Cruz, F. A. Vieira, B. R. S. Queiroz, C. D. T. Freitas, F. P.					
549	Mesquita, & P. F. N. Souza. 2022. Systematic review of antiprotozoal potential of					
550	antimicrobial peptides. Acta Trop. 236:106675.					
551	https://doi.org/10.1016/j.actatropica.2022.106675					
552	Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of adding rumen - protected					
553	palm oil in diet on milk fatty acid profile and lipid health indices in Kivircik ewes.					
554	Trop. Anim. Health Prod. 55:159. https://doi.org/10.1007/s11250-023-03580-w					
555	Sears A. F. Hentz, I. de Souza, R. Wenner, Robert F. Ward, & F. Batistel, 2024					

556	Supply of palmitic, stearic, and oleic acid changes rumen fiber digestibility and
557	microbial composition. J. Dairy Sci. 107:902-916. https://doi.org/10.3168/jds.2023-
558	<u>23568</u>
559	Shingfield, K. J. & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in
560	Ruminants and Humans. In : B. Sels and A. Philippaerts (Eds). Conjugated Linoleic
561	Acids and Conjugated Vegetable Oils. The Royal Society of Chemistry.
562	https://doi.org/10.1039/9781782620211-00001
563	Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in
564	the animal organism: A review. Sci. Agric. Bohem. 48:13-21.
565	https://doi.org/10.1515/sab-2017-0003
566	Swain, P. S., S. B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016. Nano
567	zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim.
568	Nutr. 2:134–141. https://doi.org/10.1016/j.aninu.2016.06.003
569	Tilley, J. M. A. & R. A. Terry. 1963. A two-stage technique for the <i>in vitro</i> digestion of
570	forage crops. Grass Forage Sci. 18:104–111. https://doi.org/10.1111/j.1365-
571	<u>2494.1963.tb00335.x</u>
572	Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P.
573	Faverdin. 2023. Genetic relationships between weight loss in early lactation and
574	daily milk production throughout lactation in holstein cows. J. Dairy Sci. 106:4799–
575	4812. https://doi.org/10.3168/jds.2022-22813
576	Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017.
577	Comparative efficacy of zinc supplementation from different sources on nutrient
578	digestibility, hemato-biochemistry and anti-oxidant activity in Guinea pigs. Livest.
579	Sci. 204:59–64. https://doi.org/10.1016/j.livsci.2017.08.009
580	Vargas-bello-p, E., L. E. Robles-jimenez, R. Ayala-hern, J. Romero-bernal, N.

581	Pescador-salas, & O. Alonso. 2020. Effects of calcium soaps from palm, canola						
582	and safflower oils on dry matter intake, nutrient digestibility, milk production, and						
583	milk composition in dairy goats. Animals 10:1728.						
584	https://doi.org/10.3390/ani10101728						
585	Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L.						
586	Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of zinc sulfate and coated zinc						
587	sulfate on lactation performance, nutrient digestion and rumen fermentation in						
588	holstein dairy cows. Livest. Sci. 251:104673.						
589	https://doi.org/10.1016/j.livsci.2021.104673						
590	Wang, S., Y. Wang, F. Shahidi, & C. Ho. 2020. Health Effects of Short-Chain, Medium-						
591	Chain, and Long-Chain Fatty Acids, Saturated vs Unsaturated and Omega-6 vs						
592	Omega-3 Fatty Acids and Trans Fats. In : F. Shahidi (Ed). Bailey's Industrial Oil						
593	and Fat Products: 7 th ed. John Wiley & Sons, Ltd.						
594	https://doi.org/10.1002/047167849X.bio100						
595	Wardeh, M. F. 1981. Models for Estimating Energy and Protein Utilization for Feeds:						
596	All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 4556. Utah						
597	State University, Utah, USA. https://doi.org/10.26076/9026-5aad						
598	World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group - The						
599	World Bank, Washington, USA.						
600	Wulandari, B. P. Widyobroto, & A. Agus. 2020. In vitro digestibility and ruminal						
601	fermentation profile of pangola grass (Digitaria decumbens) Supplemented with						
602	crude palm oil protected by sodium hydroxide. Livestock Research Rural						
603	Development. 32. https://www.lrrd.cipav.org.co/lrrd32/7/wulan32102.html.						
604	Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, M. Gao, H.						
605	Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The effects of dietary						

606	medium-chain fatty acids on ruminal methanogenesis and fermentation in vitro and
607	in vivo: A meta-analysis. J. Anim. Physiol. Anim. Nutr. 105:874-889.
608	https://doi.org/10.1111/jpn.13367

610	Table 1. Ingredients and chemical composition of e	xperimental diet (dry matter basis).
	Items	Composition
	Ingredient:	
	Corn straw	33.38
	Soybean hull	12.25
	Rice bran	7.42
	Pollard	9.32
	Cassava waste meal	9,93
	Coconut meal	17.01
	Soybean meal	6.98
	Molasses	3.00
	Vitamin and mineral mixture	0.80
	Nutrient composition:	
	Dry matter (DM), %	84.68
	Ash, %DM	8.63
	Crude protein, %DM	14.32
	Ether extract, %DM	4.43
	Crude fiber, %DM	20.02
	Calcium, %DM	0.33
	Phosphor, %DM	0.28
	Zinc, mg/kg DM	16,93
	Neutral detergent fiber, %DM	35.51
	Acid detergent fiber, %DM	14.77
	Total digestible nutrient (TDN) ¹ , %	63.15
611	Note: ¹ Total digestible nutrients (TDN) were c	calculated using TDN (%DM) =

 Table 1. Ingredients and chemical composition of experimental diet (dry matter basis).

TDN = -17.2649 + 1.2120(PK) + 0.8352(BETN) + 2.4637(LK) + 0.4475(SK),

according to Wardeh (1981).

Table 2. The pH, total protozoa, microbial protein, NH3, and total VFA production of rumen liquid with supplementation of zinc palm oil soap (ZPOS)

W	Treatments				CEM	¥7 1	
Variables	T0	T1	T2	T3	SEM	p-Value	
pH	6.76	6.75	6.73	6.82	0.018	0.224	
Protozoa (10 ³ cell/mL)	98.14 ^a	32.57°	82.83 ^{ab}	69.31 ^b	0.044	0.000	
Microbial protein (mg/mL)	13.01 ^a	9.37 ^b	13.37 ^a	11.41 ^{ab}	0.469	0.002	
NH ³ (mM)	14.06 ^a	14.45 ^a	9.64 ^b	10.36 ^b	0.543	0.000	
VFA (mM)	87.52 ^b	101.78 ^b	164.38ª	157.89ª	8.134	0.000	
ar ob				41.00			

Note: ^{a,b} means in the same row with different superscripts differ significantly (p<0.05).

T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partially ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

626	Table 3. Feed nutrient in vitro digestibility with supplementation of zinc palm oil soap	
627	(ZPOS)	

Variables	Treatments				CEM	X 7 1
variables	T0	T1	T2	T3	SEM	p-Value
Dry matter (%)	64.06	63.82	67.20	69.24	0.850	0.054
Organic matter (%)	69.16	65.89	69.65	69.98	0.632	0.068
Crude protein (%)	68.69	67.99	66.39	65.11	0.569	0.100
Ether extract (%)	88.45 ^b	94.34 ^a	93.22 ^a	92.35 ^a	0.587	0.000
Crude fiber (%)	54.46 ^b	51.46 ^b	73.63 ^a	66.11 ^{ab}	3.057	0.020
Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03 ^a	64.62 ^{ab}	2.830	0.006
Acid detergent fiber (%)	45.12 ^b	44.56 ^b	65.81 ^a	53.76 ^{ab}	2.704	0.006

Note: ^{a,b} means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal

diet + partially ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

 Table 4. Fermentability of feed with supplementation of zinc palm oil soap (ZPOS)

X7		Treat	CEM			
Variables	Т0	T0 T1 T2		T3	SEM	p-Value
Acetate (mM)	41.17 ^b	51.10 ^a	59.31ª	65.80 ^a	2.579	0.000
Propionate (mM)	15.91°	25.41 ^b	28.73 ^a	29.89 ^a	1.348	0.000
Butyrate (mM)	8.73 ^b	10.28 ^b	12.55ª	14.20 ^a	0.546	0.000
A/P	2.59 ^a	2.01 ^b	2.06 ^b	2.20 ^b	0.061	0.000
Methan (mM)	31.87 ^a	28.04 ^b	28.58 ^b	29.57 ab	0.489	0.014
Efficiency of energy conversion (%)	73.05	73.19	74.74	74.47	0.357	0.226

Note: ^{a,b} means in the same row with different superscripts differ significantly (p<0.05).

T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal

diet + partially ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Table 5. Proportion of fatty acids in rumen liquid with supplementation of zinc palm oil

soap (ZPOS)					_	
Fatty acids	Treatments		SEM	p-Valu		
Party actus	Т0	T1	T2	T3	SEM	p- v aiu
		%	fat			
Short-chain fatty acids (SCFA)						
C4	7.34 ^a	5.34 ^b	5.27 ^b	2.36 ^c	0.435	0.000
Medium chain fatty acids (SCFA)						
C6	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C8, caprylic	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C10, capric	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C12, lauric	1.38	1.15	1.22	1.2	0.044	0.299
Long-chain fatty acids (LCFA)						
C13	0.3ª	0.17 ^a	<0.1 ^b	<0.1 ^b	0.030	0.000
C14, myristic	2.19	1.85	2.3	1.68	0.063	0.054
C14:1	1.00	0.5	0.57	0.44	0.072	0.053
C15,	0.51	0.75	0.36	0.33	0.056	0.055
C15:1	0.34	0.23	0.16	0.21	0.025	0.051
C16, palmitic	22.03 ^b	29.34ª	29.23ª	31.14 ^a	0.854	0.000
C16:1, n7	1.12 ^ь	1.04 ^b	1.36 ^{ab}	1.5ª	0.058	0.005
C17	0.39	0.23	0.23	0.28	0.025	0.052
C17:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18, stearic	40.13 ^a	30.74 ^b	23.17 ^b	21.5 ^b	2.198	0.002
trans 11 C18:1	12.55°	17.84 ^b	26.16 ^a	28.05 ^a	1.476	0.834
cis 9 C18:1, oleic	1.09 ^b	1.43 ^b	1.99ª	1.83ª	0.099	0.000
C18:2	1.04 ^c	1.31 ^{bc}	1.6^{ab}	1.86 ^a	0.084	0.000
C18:3	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18:3, omega 6	0.22 ^b	0.26 ^b	0.45 ^a	0.53ª	0.032	0.000
C18:3, gamma linolenic	0.79 ^a	<0.1 ^c	0.38 ^b	0.41 ^b	0.064	0.000
C20	1.31	0.83	0.64	0.67	0.050	0.058
cis 11 C20:1	0.16 ^b	0.59 ^a	0.31 ^b	0.23 ^b	0.041	0.000
cis 11-14 C20:2	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C20:3	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C20:4, arachidonic	0.48^{a}	$< 0.1^{b}$	$< 0.1^{b}$	<0.1 ^b	0.048	0.000
C20:5, EPA	0.07°	0.55 ^b	0.59 ^b	0.76 ^{ab}	0.069	0.000
C21	1.38	0.31	0.2	0.26	0.017	0.000
C22, behenic	0.94 ^a	0.43 ^{ab}	0.23 ^b	0.25 ^b	0.042	0.050
C22:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C22:6, DHA	3.19 ^b	4.81 ^a	4.57 ^a	4.42 ^a	0.159	0.000
C24	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C24:1, nervonic omega 9	< 0.1	< 0.1	< 0.1	< 0.1	-	-

Note: ^{a,b} means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal

diet + partially ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

659

Table 6. Proportion of short-chain, long-chain, saturated, and unsaturated fatty acids in
 rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Fatty acids		Treatments				p-Value	
Fatty actus	T0	T1	T2 T3		SEM	p-vanie	
% fat%							
SCFA	7.34 ^a	5.34 ^b	5.27 ^b	2.36 ^c	0.453	0.000	
MCFA	1.38 ^a	1.15 ^b	1.22 ^b	1.2 ^b	0.028	0.009	
LCFA	91.23°	93.41 ^b	93.50 ^b	96.35ª	0.443	0.000	
SFA	77.9 ^a	71.14 ^b	61.85°	59.67°	1.766	0.000	
USFA	22.05 ^c	28.76 ^b	38.14 ^a	40.24 ^a	1.722	0.000	
MUFA	16.26 ^c	21.63 ^b	30.55ª	32.26 ^a	1.531	0.000	
PUFA	5.79°	7.13 ^b	7.59ª	7.98 ^a	0.201	0.000	
ah .		1 11 00		11.00	1	(0.05)	

662 Note: ^{a,b} means in the same row with different superscripts differ significantly (p<0.05).

663 SA= short-chain fatty acids, LA= long-chain fatty acids, SFA= saturated fatty acids,

664 UFA= unsaturated fatty acids, MUFA= monounsaturated fatty acids, PUFA=

665 polyunsaturated fatty acids.

TO= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal

667 diet + partially ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

668

Commented [mp33]: There are not SA, LA, and UFA in the table

Please use the same abbreviations between the table and the notes

Due date reminder

Anis Muktiani <anis.muktiani@gmail.com> To: Tropical Animal Science Journal <mediapeternakan@apps.ipb.ac.id> Fri, Aug 16, 2024 at 12:21 PM

Dear Chief Editor Tropical Animal Science Journal

I hereby submit the revised copyediting results of the manuscript entitled: Supplementation of Zinc Soap Palm Oil Improves Feed Digestibility, Fermentability and Unsaturated Fatty Acid Profile in Rumen Liquid" Thank you.

[Quoted text hidden]

56357-Article Text-293003-1-18-20240809-revised by author 4.docx 374K

1	Supplementation of Zinc Palm Oil Soap Improves Feed Digestibility,	
2	Fermentability, and Unsaturated Fatty Acid Profile in Rumen Liquid	
3		
4	A. Muktiani*, W. Widiyanto, & N. S. Pandupuspitasari	
5	Faculty of Animal and Agricultural Science, Diponegoro University	
6	Jalan Prof. Jacup Rais, Kampus Universitas Diponegoro, Semarang 65145, Indonesia	
7	*Corresponding author: anismuktiani@lecturer.undip.ac.id	
8		
9	ABSTRACT	
10	This study aimed to evaluate the effects of energy and organic zinc supplements,	
11	specifically zinc palm oil soap (ZPOS), on digestibility and unsaturated fatty acid profiles	
12	in vitro. The study used a completely randomized design with 4 treatments and 5	
13	replications. The treatments were: T0= basal diet without supplementation, T1= basal diet	
14	+ 5% palm oil (PO), T2= basal diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO), and	
15	T3= basal diet + 5% ZPOS. The inoculum source was rumen liquid from three fistulated	
16	female dairy goats and was homogenized. The goats were fed ration consisted of corn	
17	straw, soybean hulls, and concentrate containing total digestible nutrients (TDN) 63%	
18	crude protein (CP) 14%, and neutral detergent fiber (NDF) 35%. Results showed that both	
19	5% partial ZPOS and 5% ZPOS supplementation (T2 and T3) resulted increased of total	
20	volatile fatty acids (VFA), acetat, propionate, butirat, unsaturated fatty acids (USFA) and	1
21	decreased in ratio of acetat/propionate (A/P) compared to the control and supplementation	
22	of 5% PO (p<0.05). Supplementation of 5% partial ZPOS (T2) is better than 5% ZPOS	
23	because increased the digestibility of ether ekstract (EE), crude fiber (CF), NDF, and	
24	acids detergent fiber (ADF) (p<0.05) and decreased of methane compared to the control	

Commented [mp1]: What do you mean with 5% partial ZPOS? Why used this treatment? - 5% partial ZPOS means that only part of the ZPOS is used (75%), while the remaining 25% uses palm oil without protection.

- The aim of supplementation 5% partial ZPOS is so that some of the polyunsaturated fatty acids are not saponified, so that they can have an effect in the form of barriers to methanogenic microbes in the formation of methane in order to cause hydrogen accumulation to encourage increased production of propionic acid.

Commented [mp2]: All of abbreviations, ie TDN, CP, NDF, VFA, please define first Already did

Commented [mp3]: Please use a clear statement. Does the treatment increase or decrease the variable observed? Already did

25	(p<0.05). In conclusion, adding of 5% partial ZPOS (3.5% ZPOS and 1.5% PO) increase	-
26	fiber digestibility, concentration of VFA, LCFA and USFA, as well as decrease methane	
27	production in the rumen liquid.	
28	Keywords: fermentability; zinc palm oil soap; unsaturated fatty acids; rumen	
29		
30	INTRODUCTION	
31	Early lactation dairy cows experience negative energy balance due to the	
32	decreased dry matter intake (DMI). Lack or imbalance of energy during that periode	
33	may reduce production and stimulate metabolic disorders (Khotijah et al., 2017). This	
34	opinion was supported by (Tribout et al., 2023) who stated that energy deficiency has	
35	detrimental effects, including low production and weight loss in livestock. To address	
36	this challenge, especially during early lactation, providing additional energy sources	
37	through supplements is crucial.	
38	Energy requirements of dairy livestock in tropical regions differ from those in	
39	temperate areas due to varying environmental conditions and feed resources. Assessment	
40	of the energy balance of tropical and temperate crossbred dairy cows revealed significant	
41	differences in serum metabolic profiles, indicating variations in energy utilization and	
42	metabolism between the two regions (Ranaweera et al., 2020). Meta-analysis research by	
43	Oliveira (2015) found that tropical dairy cows (Bos taurus x Bos indicus) have lower	
44	MEm requirements and net energy efficiency for milk production is also lower than	
45	temperate dairy cattle (Bos taurus). Therefore, understanding these differences is very	
46	important to optimize feeding strategies, especially energy source supplementation in	

47

dairy livestock.

Commented [A4]: which level?? Please state clearly. Already did

Commented [mp5]: Please check again, Do Khotijah et al. state their research about dairy?

It has been checked and corrected to be more appropriate. Sunflower Oil Supplementation for Garut Lactationg Ewes (L. Khotijah et al.)

affected the fermentability of rumen, moreover can improve ewes body conditio weight recovery. Keywords: garut ewes, rumen fermentability, body weight recovery, u sunflower oil

INTRODUCTION Energy is the product of nutrients lactation periode. Take of imbalance of energy during that periode may reduce production and stimulate metabolic disorders that can affect the participation of the state of the state of the state are used for body maintenance, milk synthesis, and tissue recovery that may injure during partus.

Palm oil is one of the most promising vegetable oils for energy sources, with a 48 gross energy (GE) content of 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is also 49 easily obtainable, resistant to rancidity, and affordable. The global price of palm oil is 50 51 \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/mt, coconut oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains 52 saturated fatty acids in the form of palmitic acid 44%, as well as unsaturated fatty acids 53 specifically oleic acid 39.2% and linoleic acid 10.1% (Mancini et al., 2015). High levels 54 of palmitate are very beneficial for cellulolytic bacteria. Cellulolytic bacteria can 55 incorporate palmitic acid into their cell membranes, thereby increasing energy availability 56 57 for metabolic processes. Recent findings by Sears et al. (2024) showed an increase in *Prevotella* and *Fibrobacter* populations in response to palmitic acid supplementation. 58 Unsaturated fatty acids in palm oil (oleic acids and linoleic acids) contribute to energy 59 60 efficiency by reducing protozoa (Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane (CH4) production and the acetate/propionate (A/P) ratio by increasing 61 62 propionate production (Gao et al., 2016).

However, oil supplementation also has negative effects. Fat particles tend to coat
feed particles, which hinders the adhesion of rumen microbes, especially fibro lytic
microbes, thus reducing fiber digestibility (Sears *et al.*, 2024). Rumen microbes defend
against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty
acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014).

Palm oil contains 49.3% unsaturated fatty acids, when used in animal feed must be protected to prevent biohydrogenation and to avoid disrupting rumen bacterial fermentation. It is essential to safeguard unsaturated fatty acids to preserve their biological roles, such as being structural components of bio membranes that uphold **Commented [A6]:** The fatty acid content of palm oil is clarified to support the sentence in the line 59

Commented [mp7]: Palmitic acid is saturated fatty acid, not unsaturated fatty acid? Unsaturated fatty acids in this sentence are oleic acid and linoleic acids which is contained in palm oil as much as 39.2% and 10,1% (please read the line 54)

Corrections already done

Commented [mp8]: Palm oil rich in saturated fatty acid, so no need to prevent from biohydrogenation??

Please see line 54, palm oil contain 49,3% unsaturated from oleic and linoleic acids, more than unsaturated fatty acids from palmitic acids 44%.

72	membrane integrity. Polyunsaturated fatty acids in bio membranes ensure membrane
73	fluidity, which supports the activity of membrane-bound enzymes, facilitates intracellular
74	metabolism, and enhances nutrient utilization efficiency in livestock (Pereira et al., 2022).
75	One effective method is saponification, which involves binding the free carboxyl
76	groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is
77	commonly used for this purpose (Satir et al., 2023; Vargas-bello-p et al., 2020). In
78	addition to Ca, NaOH can also be used to protect the oil (Wulandari et al., 2020).
79	However, the use of zinc (Zn) minerals for this purpose has not been widely explored.
80	Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300
81	enzymes, and acts as a structural component in gene expression and signal transduction

82 (Franco *et al.*, 2024). Zn is also a major component of metalloenzymes, lactate 83 dehydrogenase, carboxypeptidase, and DNA and RNA polymerase, which play a role in 84 protein synthesis (Sloup *et al.*, 2017). Studies *in vitro* observed that supplementing Zn in 85 ruminal fluid increased cellulose digestibility (Martínez & Church, 1970) and 86 concentrations of total volatile fatty acids (VFA) and acetate (Chen *et al.*, 2019). Research 87 by Wang *et al.* (2021) found that supplementation of 20-30mg/kg DM Zn sulfate led to 88 increase nutrient digestibility and ruminal fermentation.

In livestock, Zn is involved in multiple biochemical functions such as bone metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and spermatogenesis, immune function, and appetite regulation via its effects on the central nervous system (Duffy *et al.*, 2023). The most important of Zn are cellular respiration, cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup *et al.*, 2017). The use of Zn as an oil protector has a double benefit, namely protecting

unsaturated fatty acids from the biohydrogenation process of rumen microbes while
providing Zn needed for rumen microbes and livestock, whose needs increase in the early
stages of lactation.

99 In vitro Zn soap supplementation research was conducted by Faizah et al. (2019), 100 which compared the supplementation of 10% Zn soap from palm oil with 10% corn. Supplementation with 10% palm oil Zn soap resulted in no different digestibility of dry 101 matter, organic matter, and crude fiber, but the total production of VFA, acetate, and A/P 102 ratio was higher compared to corn oil Zn soap. High acetate levels strongly support the 103 synthesis of milk fatty acids in dairy cows, especially short-chain fatty acids. However, 104 105 no research has explored the contribution of long-chain fatty acids, MUFA, and PUFA due to Zn soap supplementation as a precursor for the synthesis of long fatty acids and 106 unsaturated fatty acids in milk. This study's results provided information regarding the 107 108 concentration of long-chain fatty acids, MUFA and PUFA in the rumen due to Zn soap supplementation, which is expected to be used as a consideration in providing unsaturated 109 110 fatty acids to increase production and health of dairy livestock.

This study aimed to evaluate the effects of energy and organic Zn supplements, specifically Zn palm oil soap (ZPOS), on fermentability, digestibility, and unsaturated fatty acid profiles *in vitro*. The benefit of this research is identifying the most efficient form of palm oil supplementation to increase energy supply and improve the profile of unsaturated fatty acids in the rumen without disrupting feed fermentability *in vitro*. Discovery of the most effective use of palm oil in providing an alternative solution to energy and Zn deficiencies in dairy cattle.

118

119

MATERIALS AND METHODS

120	Zinc Soap and Feed Preparation	
121	The preparation of Zn soap was carried out according to Cabatit (1979). The palm	
122	oil used to make Zn soap was a commercial palm oil that was generally sold on the market.	
123	The zinc soap of palm oil was made based on saponification number. Palm oil is measured	
124	for its saponification number and the KOH added is proportional to the saponification	
125	number. In order to protect palm oil, zinc chloride (ZnCl2) is added in an amount equal	
126	to the KOH required to soak the oil, which is determined by the outcomes of reaction	
127	stoichiometric calculations. Palm oil was put into a glass beaker and incubated in a water	
128	bath at 90 °C. KOH that has been dissolved in ethanol is added to hot oil and stirred until	
129	the oil is completely hydrolyzed. Next, the ZnCl2 solution was added and mix	
130	continuously until a paste forms. The final step is to remove the remaining KOH by	
131	adding water and washing using a centrifuge. This process produces cream soap called	
132	zinc palm oil soap (ZPOS). The nutrient content of ZPOS is 24.36% ether extract, 4.2%	
133	crude fiber, 4.94% Zn, and gross energy 5257 kcal/kg.	
134	The basal feed consists of forage and concentrates contain CP 14% and TDN 63%	
135	that have been formulated for feeding lactating dairy cow with body weight 400 kg, milk	
136	yield 15 kg and fat content 3.5% (National Research Council, 1988). The feed was	

Commented [mp9]: What the standard used for this nutrient? Already did

141The experiment was designed using a completely randomized design with four142treatments and five replications. The treatments tested were T0= basal diet without143supplementation, T1= basal diet + 5% palm oil (PO), T2= basal diet + 5% partially ZPOS

of the basal feed are shown in Table 1.

composed of corn straw, soybean hulls, rice bran, pollard, cassava waste meal, coconut

meal, soybean meal, and molasses. The composition of ingredients and nutrient content

In Vitro Experiment

137

138

139

147	goats were given a dietary trial following the ration for in vitro substrate for one week	
148	before rumen liquid was collected. Rumen liquid was collected before morning feeding	
149	from a fistulated rumen. The rumen liquid was filtered using cheese cloth and placed into	
150	a 39 °C flask under anaerobic conditions.	
151	In vitro experiments were carried out according to the method of Tilley & Terry	
152	(1963). In the fermenter tube, 0.55 g of feed samples from each treatment were added,	
153	followed by 40 mL of McDaugall's solution and 10 mL of rumen liquid. The fermenter	
154	cylinder was flowed by CO2 gas and closed to anaerobic conditions. The fermenter tube	
155	was incubated at a 39 °C water temperature.	
156	Nutrient Digestibility	
157	The digestibility of nutrients, including dry matter (DMD), organic matter	
158	(OMD), crude protein (CPD), ether extract (EED), and crude fiber (CFD) were measured	
159		
	through two stages of incubation, namely fermentative and enzymatic. In the first stage,	
160	through two stages of incubation, namely fermentative and enzymatic. In the first stage, the fermenter tube was incubated at 39 $^{\circ}$ C water temperature for 2x24 hours, and the	
160 161		
	the fermenter tube was incubated at 39 °C water temperature for 2x24 hours, and the	
161	the fermenter tube was incubated at 39 °C water temperature for 2x24 hours, and the process was stopped by immersing the fermenter tube in ice water for 20 minutes. Then,	

The sample was filtered with Whatman No.41 filter paper using a vacuum pump. The

filter results were analyzed for DM, Ash, CP, EE and C, NDF, and ADF (AOAC, 2012)

to calculate nutrient digestibility values. Fermentation is also carried out without feed

(3.75% ZPOS + 1.25% PO), and T3= basal diet + 5% ZPOS. Rumen liquid as a source

of inoculum was taken from three female goats with fistulas that belong to the Faculty of

Animal and Agricultural Sciences Diponegoro University, and were homogenized. The

144

145

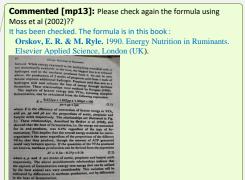
146

165

166

167

Commented [mp10]: What is the consideration of this proportion?


The consideration of this treatment is the result of previous research conducted by outhors (Faizah et al., 2019), that partial supplementation of protected oil (75%) produces higher energy efficiency compared to total protected oil supplementation.

Commented [mp11]: HCl?? Already did

168	samples, which are called blanks. Nutrient digestibility samples are calculated by the	
169	formula:	
170	Nutrient digestibility (%) = $\frac{(\text{Nutrient sample, g} - (\text{Nutrient residue, g} - \text{Nutrient blank, g})}{\text{Nutrient sample, g}}x100$	
171		
172	pH Value, VFA, NH ₃ , and Methane Production	
173	The process of measuring pH, VFA, and NH_3 followed the same procedure as that	
174	for nutrient digestibility, but the fermentation stopped at the 4-hour mark. After	
175	centrifuging the fermenter tube at 3,000 rpm for 15 minutes, the supernatant was taken to	
176	measure the rumen pH, NH3, and total and partial VFA concentrations. A digital pH	
177	meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample	
178	was tested three times. NH3 levels were determined using a spectrophotometer,	
179	employing a spectrophotometric method based on the catalyzed endophenol reaction to	
180	form a stable blue compound (Chaney & Marbach, 1962). Cottyn & Boucque (1968)	
181	reported that gas chromatography was used to quantify the generation of partial VFAs	
182	(acetic acid, propionate, and butyrate). A milliliter of 95%-97% H ₂ SO ₄ was combined	
183	with a 10 mL incubation sample. A milliliter of the sample combination was mixed with	
184	0.0003 g of dehydrated sulfosalicylate. After that, the mixture was centrifuged for 10	
185	minutes at 7 °C at 12,000 rpm. The samples were ready for gas chromatography	
186	identification.	
187	The methane gas concentration and energy conversion efficiency were determined	
188	by calculating the VFA stoichiometry, which was the estimation using the formula of	

Orskov & Ryle (1990). The formula used for methane concentration was: Methane (mM)
= 0.5a-0.25p+0.5b, where a, p and b are moles of acetic, propionic and butyric acids
respectively. The efficiency of conversion of hexose energy to VFA was calculated based

Commented [mp12]: NH₃,?? Already did

9

192	on the stoichiometry of the carbohydrate fermentation reaction from hexose to VFA	
193	(acetate, propionate, and butyrate). The calculation formula used was	
194	E (%) = $\frac{(0.622 \text{ pa} + 1.091 \text{ pp} + 1.558 \text{ pb})}{\text{pa} + \text{pp} + 2\text{pb}}x \ 100\%$	
195	Where pa, pp and pb are the proportion of acetic, propionic and butiric acids.	
196	Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid	
197	To calculate protozoa, microbial protein and fatty acid concentrations in the rumen	
198	liquid, the fermentation process was carried out for 24 hours. The populations of protozoa	
199	were calculated following the procedures of Ogimoto & Imai (1981). The solution used	
200	was trypan blue formalin saline (TBFS), made from a mixture of 100 mL 35%	
201	formaldehyde, 2 g trypan blue, 8 g NaCl, and 900 mL distilled water. The protozoa	
202	population was carried out on each treatment rumen fluid mixed with Trypan Blue	
203	Formalin Saline (TBFS) solution with a ratio of 5:1. The counting chamber with a	
204	thickness of 0.1 mm was dripped with 2 drops of the mixture. The area of the smallest	
205	box was 0.0625 mm, totaling 16 boxes with a box area of 5 boxes read. The number of	
206	protozoa was calculated by using a microscope at magnification 100 times. The formula	
207	used for total population of protozoa was : $\frac{1}{0.1 \times 0.0625 \times 16 \times 5} \times 1000 \times DFxC$, where C is	
208	protozoa population in the counting chamber and DF is diluent factor the specimen.	
209	Measurement of rumen liquid protein microbes using the method of Makkar et al.	
210	(1982) on the principle of gradual centrifugation. The fatty acid profile of rumen liquid	

was analyzed using a gas chromatograph (Model GC-14A, Shimadzu Corporation,

Kyoto, Japan). Samples were stored at -20 °C until analysis. Following the method of

Cocks & Rede (1966), the fatty acid composition was determined by converting oil to

fatty acid methyl esters. This involved adding 950 μL of n-hexane, 50 mg of oil, and 50

211

212

213

214

<section-header><section-header><section-header><text><text><text><text><text>

Commented [mp15]: How is the formula? Already did.

215	$\boldsymbol{\mu}\boldsymbol{L}$ of sodium methoxide. The peaks of the fatty acid methyl esters were identified by		
216	comparing their retention times with those of authentic standards. The relative percentage		
217	of each fatty acid was calculated based on its peak area relative to the total peak area of		
218	all fatty acids in the sample. Fatty acids were categorized into short-chain fatty acids		
219	(SCFA) as having fewer than six carbon atoms, medium chain fatty acids (MCFA)		
220	ranging from C6 to C12, and long-chain fatty acids (LCFA), which are greater than C12		
221	(Wang <i>et al.</i> , 2020).		
222			
223	Statistical Analysis		
224	The data were analyzed using a completely randomized design in SPSS 16.		
225	Duncan's Multiple Range Test with significance was set at p<0.05 to compare treatments		
226	when a significant effect was observed.		
227			
228	RESULTS		
229	Feed Fermentability in The Rumen	<	Commented [mp16]: In Rumen ?? Already did
230	Detailed rumen feed fermentation parameters can be seen in Table 2. The pH		Commented [mp17]: Please describe the results to the poin and how they affect the treatment of the observed variables.
231	levels in all treatments were not significantly different (P>0.05) and were in the normal		Already did
232	range of 6.75-6.82. Supplementation of 5% PO (T1) had an effect on reducing the number		
233	of protozoa and microbial protein compared to the control and other treatments (P<0.05).		
234	On the other hand, 5% partial ZPOS (T2) and 5% ZPOS (T3) supplementation caused a		
235	decreased in NH3 concentration and an increased in VFA production compared to the		
236	control and 5% PO supplementation (P<0.05).		
237			

239	Nutrient Digestibility		Commente
240	Table 3 presents the nutrient digestibility due to 5% PO, 5% partial ZPOS and	$\overline{\ }$	Already did
241	5% ZPOS supplementation. All treatments did not show significant differences in dry		Commenter and how the Already did
242	matter (DMD), organic matter (OMD), and crude protein (CPD) digestibility, but there		
243	were significant differences (p<0.05) in ether extract digestibility (EED), crude fiber		
244	digestibility (CFD), neutral detergent fiber digestibility (NDFD), and acid detergent fiber		
245	digestibility (ADFD). Both supplementation of 5% PO (T1), 5% partial ZPOS (T2) and		
246	5% ZPOS (T3) increased EED, but fiber digestibility (CFD, NDFD, and ADFD) was only		
247	increased by 5% partial ZPOS supplementation (T2), while 5% PO and 5% ZPOS		
248	supplementation did not differ from the control.		
249	Relative Proportion of VFA		
250	Table 4 shows the partial VFA and methane production in rumen liquid.		
251	Supplementation of 5% PO, 5% partial ZPOS and 5% ZPOS) significantly influenced		Commente
252	(p<0.05) acetate, propionate, butyrate, the A/P ratio, and methane, but did not impact the		Already did.
253	efficiency of hexose energy conversion into VFA. The relative proportion of VFAs in this		
254	study was 59%-62% acetic acid, 24%-29% propionic acid, and 12%-13% butyric acid.		
255	Both 5% partial ZPOS (T2) and 5% ZPOS supplementation increased acetate,		Commente
256	propionate, and butyrate compared to 5% PO supplementation (T1) and the control (T0).		Already did.
257	Conversely, A/P ratio and methane production decreased with 5% PO and 5% partial		
258	ZPOS supplementation. The efficiency of hexose energy conversion into VFA between		
259	treatments was not significantly different.		
260	Fatty Acids in Rumen Liquid		Commente
261	Table 5 outlines the fatty acid composition in rumen liquid. Suplementation of 5%		and how the Already did.
	· •		

PO (T1), 5% partial ZPOS (T2) and 5% ZPOS (T3) supplementation decreased 262

ted [mp18]: Nutrient Digestibility ??

ted [mp19]: Please describe the results to the point ney affect the treatment of the observed variables.

ted [mp20]: at what level....??

ted [mp21]: Increased

ted [mp22]: Please describe the results to the point ney affect the treatment of the observed variables.

Commented [mp23]: at what level....?? Already did.

263	significantly (P<0.05) short-chain fatty acids (SCFA). The long chain fatty acidc (LCFA)
264	specially palmitate (C16:0) was increased, but stearate (C18:0) was decreased by all
265	treatments (P<0.05). Unsaturated fatty acids (USFA), particularly trans 11 C18:1, cis 9
266	C18:1, C18:2, C20:5 (EPA) and C22:6 (DHA) were increased by 5% partial ZPOS (T2)
267	and 5% ZPOS (T3) supplementation.
268	These fatty acids are classified into various categories, including short-chain fatty
269	acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs),
270	saturated fatty acids (SFAs), unsaturated fatty acids (USFAs), monounsaturated fatty
271	acids (MUFAs), and polyunsaturated fatty acids (PUFAs). According to Table 6, the diets
272	supplemented with 5% PO, 5% partial ZPOS and 5% ZPOS decreased of SCFAs
273	compared to the control diet (p<0.05) but increased amount of LCFA. SFAs showed
274	increased in control and 5% PO supplementation, whereas 5% partial ZPOS and 5%
275	ZPOS supplementation demonstrated an ability to elevate USFAs. Notably, the 5% partial
276	5% ZPOS and 5% ZPOS supplementation increased of MUFAs and PUFAs than the other
277	treatments.
278	
279	DISCUSSION
280	Feed Fermentability
281	The pH is one of the crucial factors in assessing rumen health. The findings
282	indicated that adding palm oil and protected palm oil Zn soap did not disrupt the rumen
283	fermentation process. Palm oil contains high palmitic acid, which actually supports the

growth of rumen bacteria (Sears et al., 2024). Apart from being high in palmitate content, 284 palm oil is also high in unsaturated fatty acids (oleic acids), palm oil protection causes 285

unsaturated fatty acids to escape rumen microbial biohydrogenation so that negative 286

Commented [mp24]: at what level....?? Already did.

Commented [mp25]: Why palm oil did not disrupt the rumen pH?? Please describe the reason. Already did

effects on the rumen environment can be eliminated. Similar results have been reported 287 288 in the other studies, such as those conducted by Adeyemi et al. (2015), Amanullah et al. (2022), and Roy et al. (2017). 289

290 The reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil, particularly palmitic acids (C16:0). According to Rahman et al. (2022), palm 291 oil contains about 44% palmitic acid. It has been reported that supplementation of LCFA 292 in the form of palmitate (C16:0) and stearate (C18:0) resulted in a decrease in the protozoa 293 population, although the effect of the decrease did not as strong as MCFA, especially 294 capric acids (C10:0) and lauric acid (C12:0). (Matsumoto et al., 1991). The decrease is 295 296 caused by the inability of protozoa to digest fat because they do not have lipolytic enzymes, as a result the addition of oil can interfere with the metabolic activity of 297 298 protozoa and subsequently cause the number of protozoa to decrease (Hartanto et al., 299 2017).

Ibrahim et al. (2021) discovered that supplementing with palm oil altered the 300 rumen microbial population in ruminants, potentially affecting their overall protein 301 synthesis capability. Sears et al. (2024) reported that oleic acid significantly reduces 302 Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids 303 could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting 304 305 in the decreased protein synthesis. The use of ZPOS protection, both 5% partial ZPOS (T2) and 5% ZPOS (T3), can mitigate the harmful effects of unsaturated fatty acids, 306 enabling microbes to develop as effectively as in the control group. 307

Yanza et al. (2021) found that ruminants given protected medium chain fatty acids 308 309 (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to the 310

Commented [mp26]: What the correlation with pH value?? This sentence discusses the decline in the protozoa population. To avoid confusion, I separated it into another paragraph

Commented [mp27]: Does palm oil rich in Unsaturated fatty acid or oleic acid? Please use the relevant references. That right, palm oil rich in unsaturated fatty acids (oleic acids 41%), also saturated fatty acids (palmitic acids 44%). → See Rahman et al., 2022 (line 292)
 → Mancini *et al.*, 2015 (line 54)

increased propionate production. Propionate is formed from the breakdown of glycerol
during fat hydrolysis. The NH3 concentration in the T2 treatment was the lowest among
all treatments, while microbial protein production was the highest. This indicates that
NH3 is utilized for microbial protein synthesis (Getabalew & Negash, 2020).

315

Nutrient Digestibility

The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were 316 unaffected by 5% PO supplementation, indicating that this level of supplementation is 317 safe for rumen microbial growth. These results are consistent with previous research, 318 which found that 6% supplementation with vegetable oils (olive oil, sunflower oil, and 319 320 linseed oil) yielded OMD, NDFD, and ADFD values comparable to the control, although linseed oil resulted in higher digestibility than sunflower oil (Vargas-bello-p et al., 2020). 321 The effect of oil supplementation on digestibility is highly dependent on the nutrient 322 323 composition of the feed and the fatty acid profile of the oil. The experimental feed in this study, characterized by high fiber content and low ADF (13.77%), supports the 324 325 proliferation of cellulolytic microbes. A high-fiber diet may mitigate the potential negative impact of oil on fiber digestion by rumen microbes (Benchaar et al., 2015). Both 326 non-protected (T1) and protected (T2 and T3) palm oil increased EED, supporting the 327 conclusion that palm oil can be used as an energy supplement without compromising 328 329 rumen feed fermentability.

A notable finding from this research is that both partial and total Zn soap supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and ADFD. This effect is likely due to the fat and Zn content in palm oil. Palm oil contains high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki *et al.*, 2015). Research by Sears *et al.* (2024) indicates an increase in Prevotella and Fibrobacter Commented [mp28]: Nurient Digestibility ?? Already did

Commented [mp29]: What do you mean by 5% Non-protected ZPOS? Does ZPOS mean protected zinc palm oil? Correction already done.

Commented [mp30]: If palm oil at level 5% is safe for nutrient digestibility, does it mean there is no need to be protected?? The purpose of palm oil protection is to protect unsaturated fatty acids from biohydrogenation, namely preventing oleic acid from being converted into stearic acid. This will increase the supply of unsaturated fatty acids to the post-rumen, which is beneficial for livestock and livestock products

populations in response to palmitic acid supplementation. This suggests that cellulolytic
bacteria can incorporate palmitic acid into their cell membranes, thereby increasing
energy availability for metabolic processes. Furthermore, Zn is crucial for various
metabolic functions in rumen microbes.

Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing 339 enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain et 340 al., 2016; Uniyal et al., 2017). It is indispensable for preserving the structural and 341 functional integrity of over 2000 transcription factors and 300 enzymes. It can be 342 contended that virtually all metabolic pathways are reliant, to varying degrees, on at least 343 344 one Zn-dependent protein (Ranasinghe et al., 2015). Recent research by Fellner et al. (2021) elucidated that Zn supplementation precipitated increased acetate production and 345 a heightened acetate/propionate ratio. This delineates an augmented fiber digestion 346 347 process facilitated by cellulolytic bacteria, consequent to heightened microbial protein synthesis. This conclusion aligns with findings indicating elevated levels of microbial 348 protein compared to PO supplementation (P1), specifically 13.37 (T2) and 11.41 (T3) 349 versus 9.37 mg/ml in the P1 treatment (Table 3). 350

351

Relative Proportion of VFA

The relative proportion of acetate observed is slightly lower than that reported by Anzhany *et al.* (2024), which ranged from 69% to 72%, while the proportions of propionate and butyrate are comparatively higher. According to Amanullah *et al.* (2022), palm oil supplementation modifies the rumen environment, thereby altering the ratio of cellulolytic to amylolytic microbes. Both 5% partial ZPOS and 5% ZPOS supplementation resulted in significantly higher acetate production compared to nonprotected palm oil (p<0.05). Acetate is the yield of digestion of fibrous carbohydrates

Commented [mp31]: Please describe first why it is happening??? Already did

by cellulolytic bacteria, which means that the increase in acetate is in line with the 359 360 increase in the number of cellulolytic bacteria in the rumen. This is likely related to the decreasing protozoa population resulting from oil supplementation. Protozoa are 361 predators of bacteria (Dayyani et al., 2013), so a decrease in the number of protozoa will 362 increase the number of bacteria because it reduces competition for nutrients.. These 363 findings are consistent with the increased microbial protein levels observed with 5% 364 partial ZPOS and 5% ZPOS supplementation, suggesting enhanced bacterial growth. Zinc 365 (Zn) is an essential trace mineral that functions as a cofactor for over 300 enzymes, 366 including DNA and RNA polymerase, which play a role in protein synthesis (Franco et 367 368 al., 2024; Sloup et al., 2017).

The increase in propionate in the ZPOS supplementation treatment resulted from 369 the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted 370 371 into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids 372 373 from rumen bio-hydrogenation and increasing the duodenal flows of mono and polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with 374 studies showing that ZPOS supplementation leads to an increase in protozoan populations 375 (Table 4). Zn supplementation has been associated with shifts in rumen volatile fatty acid 376 377 profiles, notably an increase in propionate and a reduction in the acetate-to-propionate 378 ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane production and a lower A/P ratio is advantageous, as higher propionate levels provide a carbon framework 379 and synthetic energy for livestock. 380

381

Fatty Acids in Rumen Liquid

Previous research showed that oil supplementation caused a decrease in the 382 383 proportion of short-chain fatty acids in rumen fluid while increasing the presence of longchain fatty acids. Mancini et al. (2015) argue that this transition is caused by the large 384 385 number of long-chain fatty acids (LSFA) in palm oil, namely 98.3%, and the remaining 1.7% consists of short-chain fatty acids (SCFA). Among long-chain fatty acids, which 386 account for 98.3% of the total, almost half (49.9%) are unsaturated fatty acids (USFA), 387 consisting of 39.2% monounsaturated fatty acids (MUFA) and 10 .5% polyunsaturated 388 fatty acids (PUFA). The prevalence of saturated fatty acids (SFA) in palm oil contributes 389 to the range of rumen saturated fatty acid levels, where PO supplementation treatment 390 391 (T1) has higher SFA levels compared to ZPOS supplementation, namely T1 71.14%, T2 61.85%, and T3 59.67% (Table 6). 392

Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities, 393 394 namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and glycerol. Unsaturated fatty acids, including oleic acid (18:1), undergo a biohydrogenation 395 396 process, being converted into saturated fatty acids, stearic acid (18:0), in the rumen by bacteria (Buccioni et al., 2012). Harvatine et al. (2009), who tracked the 397 biohydrogenation process of oleic acid, found that oleate in the rumen can change into 398 trans and cis forms because rumen microbes produce cis/trans isomerase enzymes, and 399 400 there is an isomerase that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate) to trans 18:1. The dominant biohydrogenation process that occurs in the rumen is bacteria 401 hydrogenate polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 402 403 fatty acids, then trans 18:1 fatty acids into stearic acid (18:0).

Consistent with our study's findings, supplementation with ZPOS (T2 and T3)
resulted in elevated levels of trans18:1 and cis 18:1, alongside reduced stearate (18:0)

concentrations compared to non-protected oil supplementation (T1). Amanullah et al. 406 407 (2022) conducted a comparative analysis involving corn oil, linseed oil, and Ca salt (protected C18:2n-6), revealing that protected fatty acids (Ca Salt) led to diminished 408 409 stearate levels but higher proportions of MUFA and PUFA. These findings are consistent with the research by Satir et al. (2023), which demonstrated that 3% protected palm oil 410 supplementation can increase the content of palmitic acid (SFA) and oleic acid (MUFA). 411 Stearate is the final product of the biohydrogenation of oleic, linoleic, and linolenic acids. 412 This indicates a complete inhibition of the biohydrogenation process in the ZPOS 413 treatment. The protection of polyunsaturated fatty acids through saponification involves 414 415 bonding the carboxyl group with Zn, resulting in the inhibition of isomerization, which is a prerequisite for the hydrogenation of unsaturated fatty acids into saturated fatty acids. 416 This is reflected in the higher proportion of MUFA in the ZPOS treatment compared to 417 418 PO and the control (Table 6). The substantial presence of PUFA, notably EPA and DHA, underscores Zn's role in the elongation and desaturation process, facilitated by the 419 420 formation of arachidonic acid (20:4) through delta-6-desaturase (D6D) and delta-5desaturase (D5D) enzymes (Ridgway, 2016). Zn's indispensability is further highlighted 421 as a pivotal mineral cofactor for D6D and D5D enzymes (Noland & Drisko, 2020). 422

Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen, particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZPOS supplementation holds the potential for enhancing the quality of meat and milk fat.

428

429

CONCLUSION

430	Based on the results of this research, it can be concluded that zinc soap from palm	
431	oil (ZPOS) can be developed as a source of energy and organic Zn. Supplementation of	
432	5% partial ZPOS (3.75% ZPOS+1.25% PO) is better than 5% ZPOS. Beneficial effects	
433	this supplementation are increase fiber digestibility, VFA, LCFA and USFA, as well as	
434	decrease methane production in the rumen. Further investigation is required to test the	
435	ZPOS on dairy cows <i>in vivo</i> .	Commented [mp32]: In conclusion, Which level suggested the best treatment: 5% ZPOS or Partial ZPOS??
436		Already did.
437	CONFLICT OF INTEREST	
438	The authors declare that there is no conflict of interest with any financial, personal,	
439	or other relationships with other people or organizations related to the material discussed	
440	in the manuscript.	
441		
442	ACKNOWLEDGEMENT	
442 443	ACKNOWLEDGEMENT The research was funded by the Faculty of Animal and Agricultural Science,	
		Commented [mp33]: Please add the contract number and the year of the project.
443	The research was funded by the Faculty of Animal and Agricultural Science,	
443 444	The research was funded by the Faculty of Animal and Agricultural Science,	year of the project.
443 444 445	The research was funded by the Faculty of Animal and Agricultural Science, Diponegoro University at 2023 with the contract number 4/UN7.F5/HK/III/2023.	year of the project.
443 444 445 446	The research was funded by the Faculty of Animal and Agricultural Science, Diponegoro University at 2023 with the contract number 4/UN7.F5/HK/III/2023. REFERENCES	year of the project.
443 444 445 446 447	The research was funded by the Faculty of Animal and Agricultural Science, Diponegoro University at 2023 with the contract number 4/UN7.F5/HK/III/2023. REFERENCES Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A.	year of the project.
443 444 445 446 447 448	The research was funded by the Faculty of Animal and Agricultural Science, Diponegoro University at 2023 with the contract number 4/UN7.F5/HK/III/2023. REFERENCES Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A. Karsani, & A. Q. Sazili. 2015. Influence of Carotino oil on in vitro rumen	year of the project.
443 444 445 446 447 448 449	The research was funded by the Faculty of Animal and Agricultural Science, Diponegoro University at 2023 with the contract number 4/UN7.F5/HK/III/2023. REFERENCES Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A. Karsani, & A. Q. Sazili. 2015. Influence of Carotino oil on in vitro rumen fermentation, metabolism and apparent biohydrogenation of fatty acids. Animal	year of the project.
443 444 445 446 447 448 449 450	The research was funded by the Faculty of Animal and Agricultural Science, Diponegoro University at 2023 with the contract number 4/UN7.F5/HK/III/2023. REFERENCES Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A. Karsani, & A. Q. Sazili. 2015. Influence of Carotino oil on in vitro rumen fermentation, metabolism and apparent biohydrogenation of fatty acids. Animal Science Journal. 86:270–78. <u>https://doi.org/10.1111/asj.12279</u>	year of the project.

454	https://doi.org/10.3390/fermentation8050242			
455	Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid biohydrogenation,			
456	fermentation, and digestibility of ration containing napier and king grass with			
457	different harvest ages and altitudes: In Vitro study. Trop. Anim. Sci. J. 47:68-78.			
458	https://doi.org/10.5398/tasj.2024.47.1.68			
459	AOAC. 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical			
460	Chemists, Washington, DC.			
461	Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil			
462	supplementation to dairy cows fed diets based on red clover silage or corn silage:			
463	effects on methane production, rumen fermentation, nutrient digestibility, n balance,			
464	and milk production. J. Dairy Sci. 98:7993-8008. https://doi.org/10.3168/jds.2015-			
465	<u>9398</u>			
466	Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid			
467	metabolism in the rumen: New insights on lipolysis and biohydrogenation with an			
468	emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 174:1-			
469	25. https://doi.org/10.1016/j.anifeedsci.2012.02.009			
470	Cabatit, B. C. 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press, Manila.			
471	Chaney, A. L., & E. P. Marbach. 1962. Modified reagents for determination of urea and			
472	ammonia. Clin. Chem. 8:130-32. https://doi.org/10.1093/clinchem/8.2.130			
473	Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of Zinc-bearing			
474	palygorskite on rumen fermentation in vitro. Asian-Australas. J. Anim. Sci. 32:63-			
475	71. https://doi.org/10.5713/ajas.17.0920			

476 Cocks, L. V., & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis.
477 Academic Press, London.

478	Dayyani, N., I	K. Karkudi, &	A. Zakeria	n . 2013. Sp	ecial rume	n microb	iology. Int. J.
479	Adv.	Biol.	Bion	ned.	Res.		1:1397–1402.
480	https://ww	vw.ijabbr.com/a	urticle 7966	f05e6fc44e9	9d3326e38	24c4aba4	fd7a4.pdf
481	Duffy, R., M.	Yin, & L. E. F	Redding. 202	3. A Review	v of the im	pact of d	ietary zinc on
482	livestock	health.	J. Ti	race E	lem.	Miner.	5:100085.
483	https://doi	.org/10.1016/j.	itemin.2023.1	100085			
484	Faizah, L. I.,	W. Widiyant	o, & A. Mu	ı ktiani . 201	9. The ef	fect of to	otal or partial
485	protected	vegetable oil su	pplementatio	on on <i>in vitre</i>	o digestibil	ity, feed f	Fermentability
486	and	energy ef	ficiency.	Buletin	Petern	akan.	43:171–78.
487	https://doi	.org/10.21059/	buletinpetern	ak.v43i3.43	231		
488	Fellner, V., S.	Durosoy, V.	Kromm, & J	I. W. Spear	rs. 2021. E	Effects of	supplemental
489	zinc on ru	uminal ferment	ation in cont	inuous cultu	ures. Appl.	Anim. S	ci. 37:27–32.
490	https://doi	.org/10.15232/a	aas.2020-021	<u>04</u>			
491	Franco, C. E.,	E. L. Rients,	F. E. Diaz, S	S. L. Hanse	n, & J. L.	McGill.	2024. Dietary
492	zinc supp	plementation ir	n steers moo	dulates labi	le zinc c	oncentrati	on and zinc
493	transporte	r gene express	ion in circul	ating immu	ne cells. E	Biol. Trac	e Elem. Res.
494	https://doi	.org/10.1007/s1	12011-024-04	<u>4123-6</u>			
495	Gao, J., M. W	ang, Y. Jing, X	. Sun, T. Wı	1, & L. Shi.	2016. Imp	acts of the	e unsaturation
496	degree of	long-chain fatty	acids on the	volatile fatt	y acid prof	ïles of rur	nen microbial
497	fermentati	ion in goa	ats in vi	itro. J.	Integr.	Agric.	15:2827–33.
498	https://doi	.org/10.1016/S	2095-3119(1	<u>6)61418-1</u>			
499	Getabalew, M	., & A. Negas	h . 2020. Niti	ogen Metal	oolism and	recycling	g in ruminant

- 500 animals : A review college of agricultural and natural resources science. Acad. J.
- 501 Nutr. 9:29–38. <u>https://doi.org/10.5829/idosi.ajn.2020.29.38</u>

502	Hartanto, R., L. Cai, J. Yu, N. Zhang, L. Sun, & D. Qi. 2017. Effects of
503	supplementation with monensin and vegetable oils on in vitro enteric methane
504	production and rumen fermentability of goats. Pakistan J. Agric. Sci. 54:693-698.
505	https://doi.org/10.21162/PAKJAS/17.434.
506	Harvatine, K. J., Y. R. Boisclair, & D. E. Bauman. 2009. Recent Advances in the
507	regulation of milk fat synthesis. Animal. 3:40–54.
508	https://doi.org/10.1017/S1751731108003133
509	Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The role of zinc, manganse
510	and copper in rumen metabolism and immune function: A review article. Open J.
511	Anim. Sci. 6:304–24. https://doi.org/10.4236/ojas.2016.64035
512	Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, S. C. L. Candyrine, W.
513	N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of
514	vegetable oil supplementation on rumen fermentation and microbial population in

515 ruminant: A review. Trop. Anim. Health Prod. 53:1–11.

516 <u>https://doi.org/10.1007/s11250-021-02863-4</u>

517 Khaskheli, A. A., & L. Chou. 2020. Evaluation of fatty acids composition,
518 metabolizable energy, nutrients digestibility of crude palm oil fat crystals in

- 519
 Turkeys.
 Anim.
 Feed
 Sci.
 Technol.
 270:114734.

 520
 https://doi.org/10.1016/j.anifeedsci.2020.114734

 </
- 521 Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of
- 522 sunflower oil supplementation as unsaturated fatty acid source on rumen
- 523 fermentability and performance of lactating Garut ewes. J. Indones. Trop. Anim.
- 524 Agric. 42:185–93. <u>https://doi.org/10.14710/jitaa.42.3.185-193</u>
- 525 Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-chemical properties, fatty

526	acid profile and nutrition in palm oil. J. Paramed. Sci. 6:117–34.									
527	https://doi.org/10.22037/jps.v6i3.9772									
528	Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple									
529	determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170-73.									
530	https://doi.org/10.3168/jds.S0022-0302(82)82477-6									
531	Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono.									
532	2015. Biological and nutritional properties of palm oil and palmitic acid: Effects on									
533	health. Molecules. 20:17339–17361. https://doi.org/10.3390/molecules200917339.									
534	Martínez, A., & D. C. Church. 1970. Effect of various mineral rumen cellulose									
535	elements. J. Anim. Sci. 31:982-90. https://doi.org/10.2527/jas1970.315982x									
536	Matsumoto, M., Takeru K., Akio T., & Hisao I. 1991. Defaunation effects of medium-									
537	chain fatty acids and their derivatives on goat rumen protozoa. J. Gen. Appl. Microb.									
538	37:439-45. https://doi.org/10.2323/jgam.37.439									
539	Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of different vegetable oils									
540	on in vitro ruminal fermentability and nutrient digestibility in ettawah crossbred									
541	goat. Anim. Prod. 21:22-29. https://doi.org/10.20884/1.jap.2019.21.1.689									
542	National Research Council. 1988. Nutrient Requirement of Dairy Cattle. 6th Revised.									
543	National Academy Press, Washington, DC.									
544	Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan.									
545	2015. The Role of ciliate protozoa in the rumen. Fron. Microbiol. 6:1-14.									
546	https://doi.org/10.3389/fmicb.2015.01313									
547	Noland, D., & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition									

548 Therapy. In : L. Wagner (Eds). Humana Press, Switzerland.
 549 <u>https://doi.org/10.1007/978-3-030-30730-1</u>

550	Ogimoto, K., & S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Societies
551	Press, Tokyo.
552	Oliveira, A. S. 2015. Meta-analysis of feeding trials to estimate energy requirements of
553	dairy cows under tropical condition. Anim. Feed Sci. Technol. 210:94-103.
554	https://doi.org/10.1016/j.anifeedsci.2015.10.006
555	Orskov, E. R., & M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied
556	Science, London (UK).
557	Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui
558	J. B. Bessa, & L. Lopes-da-costa. 2022. Effects of feeding rumen-protected linseed
559	fat to postpartum dairy cows on plasma n-3 polyunsaturated fatty acid concentrations
560	and metabolic and reproductive parameters. J. Dairy Sci. 105:361-74.
561	https://doi.org/10.3168/jds.2021-20674
562	Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The Composition of fatty
563	acids in several vegetable oils from Indonesia. Biodiversitas. 23:2167-2176.
564	https://doi.org/10.13057/biodiv/d230452
565	Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P.
566	Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of zinc
567	supplementation on serum lipids: A systematic review and meta-analysis. Nutr.
568	Metab. 12:1-16. https://doi.org/10.1186/s12986-015-0023-4
569	Ranaweera, K. K. T. N., M. B. P. K. Mahipala, & W. M. P. B. Weerasinghe. 2020.
570	Evaluation of energy balance in tropical and temperate crossbred dairy cows at post-
571	partum transition stage: A case study. Trop. Agric. Res. 31:12-20.
572	https://doi.org/10.4038/tar.v31i2.8363
573	Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. In: R.S.

- 574 McLeod (Eds). Elsevier, Netherland.
- 575 Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of different vegetable oils on rumen
- 576 fermentation and conjugated linoleic acid concentration *in vitro*. Vet. World. 10:11–

577 16. https://doi.org/10.14202/vetworld.2017.11-16

- 578 Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of adding rumen protected
- palm oil in diet on milk fatty acid profile and lipid health indices in Kivircik ewes.

580 Trop. Anim. Health Prod. 55:159. <u>https://doi.org/10.1007/s11250-023-03580-w</u>

- 581 Sears, A., F. Hentz, J. de Souza, B. Wenner, Robert E. Ward, & F. Batistel. 2024.
- 582 Supply of Palmitic, stearic, and oleic acid changes rumen fiber digestibility and
- 583 microbial composition. J. Dairy Sci. 107:902–916. <u>https://doi.org/10.3168/jds.2023-</u>
- 584 <u>23568</u>
- 585 Shingfield, K. J., & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in
- 586 Ruminants and Humans. In: B. Sels and A. Philippaerts (Eds). Conjugated Linoleic
- Acids and Conjugated Vegetable Oils. The Royal Society of Chemistry.
 https://doi.org/10.1039/9781782620211
- 589 Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in
- the animal organism: A review. Sci. Agric. Bohem. 48:13–21.
 <u>https://doi.org/10.1515/sab-2017-0003</u>
- 592 Swain, Partha S., Somu B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016.
- 593 Nano zinc, an alternative to conventional zinc as animal feed supplement: A review.
- 594
 Anim. Nutr. 2:134–141. <u>https://doi.org/10.1016/j.aninu.2016.06.003</u>
- 595 Tilley, J. M. A., & R. A. Terry. 1963. A two-stage technique for the *in vitro* digestion
- of forage crops. Grass Forage Sci. 18:104–11. <u>https://doi.org/10.1111/j.1365-</u>
 2494.1963.tb00335.x

598	Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P.										
599	Faverdin. 2023. Genetic relationships between weight loss in early lactation and										
600	daily milk production throughout lactation in holstein cows. J. Dairy Sci. 106:4799–										
601	4812. <u>https://doi.org/10.3168/jds.2022-22813</u>										
602	Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017.										
603	Comparative efficacy of zinc supplementation from different sources on nutrient										
604	digestibility, hemato-biochemistry and anti-oxidant activity in guinea pigs. Livest.										
605	Sci. 204:59-64. https://doi.org/10.1016/j.livsci.2017.08.009										
606	Vargas-bello-p, E., L. E. Robles-jimenez, R. Ayala-hern, J. Romero-bernal, N.										
607	Pescador-salas, & O. Alonso. 2020. Effects of calcium soaps from palm, canola										
608	and safflower oils on dry matter intake, nutrient digestibility, milk production, and										
609	milk composition in dairy goats. Animals. 10: 1728.										
610	https://doi.org/10.3390/ani10101728										
611	Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L.										
612	Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of zinc sulfate and coated zinc										
613	sulfate on lactation performance, nutrient digestion and rumen fermentation in										
614	holstein dairy cows. Livest. Sci. 251: 104673.										
615	https://doi.org/10.1016/j.livsci.2021.104673										
616	Wang, S., Y. Wang, F. Shahidi, & C. Ho. 2020. Health Effects of Short-Chain, Medium-										
617	Chain, and Long-Chain Fatty Acids, Saturated Vs Unsaturated and Omega-6 Vs										
618	Omega-3 Fatty Acids and Trans Fats. In : F. Shahidi (Ed). Bailey's Industrial Oil										
619	and Fat Products: 7 th ed. John Wiley & Sons, Ltd.										
620	https://doi.org/10.1002/047167849x.bio100										
621	Wardeh. Muhammad Fadel. 1981. Models for Estimating Energy and Protein										

622	Utilization for Feeds: All Graduate Theses and Dissertations, Spring 1920 to								
623	Summer 2023. 4556. Utah State University, Utah, USA.								
624	https://doi.org/10.26076/9026-5aad								
625	World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group - The								
626	World Bank, Washington, USA.								
627	Wulandari, B.P. Widyobroto, & A. Agus. 2020. In vitro digestibility and ruminal								
628	fermentation profile of pangola grass (Digitaria decumbens) supplemented with								
629	crude palm oil protected by sodium hydroxide. Livestock Research for Rural								
630	Development. 32. https://www.lrrd.cipav.org.co/lrrd32/7/wulan32102.html								
631	Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, M. Gao, H.								
632	Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The effects of dietary								
633	medium-chain fatty acids on ruminal methanogenesis and fermentation in vitro and								
634	in vivo: A meta-analysis. J. Anim. Physiol. Anim. Nutr. 105:874-889.								
635	https://doi.org/10.1111/jpn.13367								

636 Table 1. Ingredients and chemical composition of experimental diet (dry matter

637

basis).

Items	Composition
Ingredient:	
Corn straw	33.38
Soybean hull	12.25
Rice bran	7.42
Pollard	9.32
Cassava waste meal	9,93
Coconut meal	17.01
Soybean meal	6.98
Molasses	3.00
Vitamin and mineral mixture	0.80
Nutrient composition:	
Dry matter (DM), %	84.68
Ash, %DM	8.63
Crude protein, %DM	14.32
Ether extract, %DM	4.43
Crude fiber, %DM	20.02
Calcium, %DM	0.33
Phosphor, %DM	0.28
Zinc, mg/kg DM	16,93
Neutral detergent fiber, %DM	35.51
Acid detergent fiber, %DM	14.77
Total digestible nutrient (TDN) ¹ , %	63.15

638Note: 1 Total digestible nutrients (TDN) were calculated using TDN (%DM) =639TDN = -17.2649 + 1.2120(PK) + 0.8352(BETN) + 2.4637(LK) + 0.4475(SK),640according to Wardeh (1981).

641

642

Table 2. In vitro feed fermentability in rumen liquid with supplementation of zinc palm
 oil soap (ZPOS)

Variables		Trea	SEM			
variables	T0	T1	T2	T3	SEIVI	p-Value
pН	6.76	6.75	6.73	6.82	0.018	0.224
Protozoa (10 ³ cell/mL)	98.14 ^a	32.57°	82.83 ^{ab}	69.31 ^b	0.044	0.000
Microbial protein (mg/mL)	13.01 ^a	9.37 ^b	13.37 ^a	11.41 ^{ab}	0.469	0.002
NH^{3} (mM)	14.06 ^a	14.45 ^a	9.64 ^b	10.36 ^b	0.543	0.000
VFA (mM)	87.52 ^b	101.78 ^b	164.38ª	157.89ª	8.134	0.000

Note: ^{a,b} means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal

647 diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

648 649

Table 3. In vitro nutrient digestibility in rumen liquid with supplementation of zinc palm
 oil soap (ZPOS)

	011 30up (21 05)						
Variables			Treat	SEM	m Walaa		
		Т0	T1	T2	T3	SEM	p-Value
	Dry matter (%)	64.06	63.82	67.20	69.24	0.850	0.054
	Organic matter (%)	69.16	65.89	69.65	69.98	0.632	0.068
	Crude protein (%)	68.69	67.99	66.39	65.11	0.569	0.100
	Ether extract (%)	88.45 ^b	94.34 ^a	93.22 ^a	92.35 ^a	0.587	0.000
	Crude fiber (%)	54.46 ^b	51.46 ^b	73.63 ^a	66.11 ^{ab}	3.057	0.020
	Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03 ^a	64.62 ^{ab}	2.830	0.006
	Acid detergent fiber (%)	45.12 ^b	44.56 ^b	65.81 ^a	53.76 ^{ab}	2.704	0.006
_							

Note: ^{a,b} means in the same row with different superscripts differ significantly (p<0.05).

T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal
diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

 diet + 5% partial ZPOS (5.75% ZPOS + 1.25% PO); 15= basal diet + 5% ZI

660	Table 4. In vitro VFA and methane production in rumen liquid with supplementation of
661	zinc palm oil soap (ZPOS)

Maniah la a		Treat	CEN (
Variables	Т0	T1	T2	Т3	SEM	p-Value
Acetate (mM)	41.17 ^b	51.10 ^a	59.31ª	65.80 ^a	2.579	0.000
Propionate (mM)	15.91°	25.41 ^b	28.73ª	29.89 ^a	1.348	0.000
Butyrate (mM)	8.73 ^b	10.28 ^b	12.55ª	14.20 ^a	0.546	0.000
A/P	2.59 ª	2.01 ^b	2.06 ^b	2.20 ^b	0.061	0.000
Methan (mM)	31.87 ^a	28.04 ^b	28.58 ^b	29.57 ab	0.489	0.014
Efficiency of energy conversion (%)	73.05	73.19	74.74	74.47	0.357	0.226

Note: ^{a,b} means in the same row with different superscripts differ significantly (p<0.05).

T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal

664 diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

0	
1	Table 5. In vitro proportion of fatty acids in rumen liquid with supplementation of zinc

682 palm oil soap (ZPOS)

Fatty acids	Treatments				SEM	p-Value
Fatty actus	Т0	T1	T2	T3	SLIVI	p-value
		%	fat			
Short-chain fatty acids (SCFA)						
C4	7.34 ^a	5.34 ^b	5.27 ^b	2.36 ^c	0.435	0.000
Medium chain fatty acids (SCFA)						
C6	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C8, caprylic	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C10, capric	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C12, lauric	1.38	1.15	1.22	1.2	0.044	0.299
Long-chain fatty acids (LCFA)						
C13	0.3ª	0.17 ^a	<0.1 ^b	<0.1 ^b	0.030	0.000
C14, myristic	2.19	1.85	2.3	1.68	0.063	0.054
C14:1	1.00	0.5	0.57	0.44	0.072	0.053
C15,	0.51	0.75	0.36	0.33	0.056	0.055
C15:1	0.34	0.23	0.16	0.21	0.025	0.051
C16, palmitic	22.03 ^b	29.34ª	29.23ª	31.14 ^a	0.854	0.000
C16:1, n7	1.12 ^b	1.04 ^b	1.36 ^{ab}	1.5 ^a	0.058	0.005
C17	0.39	0.23	0.23	0.28	0.025	0.052
C17:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18, stearic	40.13 ^a	30.74 ^b	23.17 ^b	21.5 ^b	2.198	0.002
trans 11 C18:1	12.55 ^c	17.84 ^b	26.16 ^a	28.05 ^a	1.476	0.834
cis 9 C18:1, oleic	1.09 ^b	1.43 ^b	1.99 ^a	1.83 ^a	0.099	0.000
C18:2	1.04 ^c	1.31 ^{bc}	1.6^{ab}	1.86 ^a	0.084	0.000
C18:3	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18:3, omega 6	0.22 ^b	0.26 ^b	0.45 ^a	0.53ª	0.032	0.000
C18:3, gamma linolenic	0.79 ^a	<0.1 ^c	0.38 ^b	0.41 ^b	0.064	0.000
C20	1.31	0.83	0.64	0.67	0.050	0.058
cis 11 C20:1	0.16 ^b	0.59 ^a	0.31 ^b	0.23 ^b	0.041	0.000
cis 11-14 C20:2	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C20:3	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C20:4, arachidonic	0.48^{a}	<0.1 ^b	$< 0.1^{b}$	<0.1 ^b	0.048	0.000
C20:5, EPA	0.07°	0.55 ^b	0.59 ^b	0.76^{ab}	0.069	0.000
C21	1.38	0.31	0.2	0.26	0.017	0.000
C22, behenic	0.94 ^a	0.43 ^{ab}	0.23 ^b	0.25 ^b	0.042	0.050
C22:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C22:6, DHA	3.19 ^b	4.81 ^a	4.57 ^a	4.42 ^a	0.159	0.000
C24	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C24:1, nervonic omega 9	< 0.1	< 0.1	< 0.1	< 0.1	-	

Note: ^{a,b} means in the same row with different superscripts differ significantly (p<0.05).
T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

686 687

Table 6. In vitro proportion of short-chain, long-chain, saturated, and unsaturated fatty
 acids in rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Fatty acids		Treat	SEM	p-Value			
	T0	T1	T2	T3	SEIVI	p-value	
	% fat%						
SCFA	7.34 ^a	5.34 ^b	5.27 ^b	2.36 ^c	0.453	0.000	
MCFA	1.38 ^a	1.15 ^b	1.22 ^b	1.2 ^b	0.028	0.009	
LCFA	91.23°	93.41 ^b	93.50 ^b	96.35ª	0.443	0.000	
SFA	77.9 ^a	71.14 ^b	61.85°	59.67°	1.766	0.000	
<mark>USFA</mark>	22.05°	28.76 ^b	38.14 ^a	40.24 ^a	1.722	0.000	
MUFA	16.26 ^c	21.63 ^b	30.55 ^a	32.26 ^a	1.531	0.000	
PUFA	5.79°	7.13 ^b	7.59 ^a	7.98 ^a	0.201	0.000	

690 Note: ^{a,b} means in the same row with different superscripts differ significantly (p<0.05).

691 SCFA= short-chain fatty acids, MCFA= medium-chain fatty acids, LCFA= long-chain

692 fatty acids, SFA= saturated fatty acids, USFA= unsaturated fatty acids, MUFA=

693 monounsaturated fatty acids, PUFA= polyunsaturated fatty acids.

T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal

695 diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS. 696 Commented [mp34]: There are not SA, LA, and UFA in the table Please use the same abbreviations between the table and the notes Corrected already done

Due date reminder

Tropical Animal Science Journal <mediapeternakan@apps.ipb.ac.id> To: Anis Muktiani <anis.muktiani@gmail.com> Fri, Aug 16, 2024 at 1:01 PM

Dear Dr. Anis Muktiani,

Thank you for submitting the Copyediting revision of your manuscript. We will first check the submitted file. After the copyediting stage, we will send you the PROOF of your manuscript and ask you to check the final version.

Regards,

Prof. Dr. Komang G Wiryawan Chief Editor Tropical Animal Science Journal [Quoted text hidden]

Participants

Prof. Dr. Komang G Wiryawan (komang)

Dr Anis Muktiani (anismuktiani)

Messages	
Note	From
Dear A. Muktiani, W. Widiyanto, & N. S. Pandupuspitasari: I am pleased to inform you that your article submitted to Tropical Animal Science Journal, entitled: "Supplementation of Zinc Palm Oil Soap Improves Feed Fermentability and Unsaturated Fatty Acid Profile in Rumen Liquid" has been approved to be published in Tropical Animal Science Journal in the upcoming edition (Vol. 47 No. 3, September 2024). Submission No. TASJ-56357	komang 2024-08-20 09:14 AM
Please find the PROOF of your manuscript in the attached file. If there are still any corrections in the manuscript, please respond and return the document within 5 days.	
Thank you for your article submission, and we are looking forward to receiving your incoming articles.	
Prof. Dr. Komang G Wiryawan Chief Editor Tropical Animal Science Journal kgwiryawan@yahoo.com	
🗅 komang, TASJSept2024_371.pdf	

Supplementation of Zinc Palm Oil Soap Improves Feed Fermentability and Unsaturated Fatty Acid Profile in Rumen Liquid

A. Muktiani*, W. Widiyanto, & N. S. Pandupuspitasari

Faculty of Animal and Agricultural Science, Diponegoro University Jalan Prof. Jacup Rais, Kampus Universitas Diponegoro, Semarang 65145, Indonesia *Corresponding author: anismuktiani@lecturer.undip.ac.id (Received 13-06-2024; Revised 26-07-2024; Accepted 29-07-2024)

ABSTRACT

This study aimed to evaluate the effects of energy and organic zinc supplements, specifically zinc palm oil soap (ZPOS), on digestibility and unsaturated fatty acid profiles in vitro. The study used a completely randomized design with 4 treatments and 5 replications. The treatments were: T0= basal diet without supplementation, T1= basal diet + 5% palm oil (PO), T2= basal diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO), and T3= basal diet + 5% ZPOS. The inoculum source was rumen liquid from three fistulated female dairy goats and was homogenized. The goats were fed ration consisting of corn straw, soybean hulls, and concentrate containing total digestible nutrients (TDN) 63%, crude protein (CP) 14%, and neutral detergent fiber (NDF) 35%. Results showed that both 5% partial ZPOS and 5% ZPOS supplementation (T2 and T3) resulted in the increase of total volatile fatty acids (VFA), acetate, propionate, butyrate, unsaturated fatty acids (USFA) and a decrease in the ratio of acetate/propionate (A/P) compared to the control and supplementation of 5% PO (p<0.05). Supplementation of 5% partial ZPOS (T2) is better than 5% ZPOS because increased the digestibility of ether extract (EE), crude fiber (CF), NDF, and acids detergent fiber (ADF) (p<0.05) and decreased of methane compared to the control (p<0.05). In conclusion, adding 5% partial ZPOS (3.5% ZPOS and 1.5% PO) increases fiber digestibility, VFA, LCFA, and USFA concentration, and decreases methane production in the rumen liquid.

Keywords: fermentability; rumen; zinc palm oil soap; unsaturated fatty acids

INTRODUCTION

Early lactation dairy cows experience negative energy balance due to the decreased dry matter intake (DMI). Lack or energy imbalance during that period may reduce production and stimulate metabolic disorders (Khotijah *et al.*, 2017). This opinion was supported by (Tribout *et al.*, 2023), who stated that energy deficiency has detrimental effects, including low production and weight loss in livestock. To address this challenge, especially during early lactation, providing additional energy sources through supplements is crucial.

Energy requirements of dairy livestock in tropical regions differ from those in temperate areas due to varying environmental conditions and feed resources. Assessment of the energy balance of tropical and temperate crossbred dairy cows revealed significant differences in serum metabolic profiles, indicating variations in energy utilization and metabolism between the two regions (Ranaweera *et al.*, 2020). Meta-analysis research by Oliveira (2015) found that tropical dairy cows (*Bos taurus x Bos indicus*) have lower MEm requirements and net energy efficiency for milk production is also lower than temperate dairy cattle (*Bos taurus*). Therefore, understanding these differences is

very important to optimize feeding strategies, especially energy source supplementation in dairy livestock.

Palm oil is one of the most promising vegetable oils for energy sources, with a gross energy (GE) content of 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is also easily obtainable, resistant to rancidity, and affordable. The global price of palm oil is \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/ mt, coconut oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains saturated fatty acids in the form of palmitic acid 44% and unsaturated fatty acids, specifically oleic acid 39.2% and linoleic acid 10.1% (Mancini et al., 2015). High levels of palmitate are very beneficial for cellulolytic bacteria. Cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby increasing energy availability for metabolic processes. Recent findings by Sears et al. (2024) showed an increase in Prevotella and Fibrobacter populations in response to palmitic acid supplementation. Unsaturated fatty acids in palm oil (oleic acids and linoleic acids) contribute to energy efficiency by reducing protozoa (Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane (CH4) production and the acetate/propionate (A/P) ratio by increasing propionate production (Gao et al., 2016).

However, oil supplementation also has negative effects. Fat particles tend to coat feed particles, which hinders the adhesion of rumen microbes, especially fibrolytic microbes, thus reducing fiber digestibility (Sears *et al.*, 2024). Rumen microbes defend against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014).

Palm oil contains 49.3% unsaturated fatty acids, and when used in animal feed, it must be protected to prevent biohydrogenation and to avoid disrupting rumen bacterial fermentation. It is essential to safeguard unsaturated fatty acids to preserve their biological roles, such as being structural components of bio membranes that uphold membrane integrity. Polyunsaturated fatty acids in biomembranes ensure membrane fluidity, which supports the activity of membrane-bound enzymes, facilitates intracellular metabolism and enhances nutrient utilization efficiency in livestock (Pereira *et al.*, 2022).

One effective method is saponification, which involves binding the free carboxyl groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is commonly used for this purpose (Satir *et al.*, 2023; Vargas-bello-p *et al.*, 2020). In addition to Ca, NaOH can also be used to protect the oil (Wulandari *et al.*, 2020). However, the use of zinc (Zn) minerals for this purpose has not been widely explored.

Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 enzymes and acts as a structural component in gene expression and signal transduction (Franco *et al.*, 2024). Zn is also a major component of metalloenzymes, lactate dehydrogenase, carboxypeptidase, and DNA and RNA polymerase, which play a role in protein synthesis (Sloup *et al.*, 2017). Studies *in vitro* observed that supplementing Zn in ruminal fluid increased cellulose digestibility (Martínez & Church, 1970) and concentrations of total volatile fatty acids (VFA) and acetate (Chen *et al.*, 2019). Research by Wang *et al.* (2021) found that supplementation of 20-30 mg/kg DM Zn sulfate led to increasing nutrient digestibility and ruminal fermentation.

In livestock, Zn is involved in multiple biochemical functions such as bone metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and spermatogenesis, immune function, and appetite regulation via its effects on the central nervous system (Duffy *et al.*, 2023). The most important of Zn are cellular respiration, cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup *et al.*, 2017). The use of Zn as an oil protector has a double benefit, namely protecting unsaturated fatty acids from the biohydrogenation process of rumen microbes while providing Zn needed for rumen microbes and livestock, whose needs increase in the early stages of lactation.

In vitro Zn soap supplementation research was conducted by Faizah *et al.* (2019), which compared the supplementation of 10% Zn soap from palm oil with 10% corn. Supplementation with 10% palm oil Zn soap

resulted in no different digestibility of dry matter, organic matter, and crude fiber, but the total production of VFA, acetate, and A/P ratio was higher compared to corn oil Zn soap. High acetate levels strongly support the synthesis of milk fatty acids in dairy cows, especially short-chain fatty acids. However, no research has explored the contribution of long-chain fatty acids, MUFA, and PUFA due to Zn soap supplementation as a precursor for the synthesis of long fatty acids and unsaturated fatty acids in milk. This study's results provided information regarding the concentration of longchain fatty acids, MUFA and PUFA in the rumen due to Zn soap supplementation, which is expected to be used as a consideration in providing unsaturated fatty acids to increase the production and health of dairy livestock.

This study aimed to evaluate the effects of energy and organic Zn supplements, specifically Zn palm oil soap (ZPOS), on fermentability, digestibility, and unsaturated fatty acid profiles *in vitro*. The benefit of this research is identifying the most efficient form of palm oil supplementation to increase energy supply and improve the profile of unsaturated fatty acids in the rumen without disrupting feed fermentability *in vitro*. Discover the most effective use of palm oil in providing an alternative solution to energy and Zn deficiencies in dairy cattle.

MATERIALS AND METHODS

Zinc Soap and Feed Preparation

The preparation of Zn soap was carried out according to Cabatit (1979). The palm oil used to make Zn soap was a commercial palm oil that was generally sold on the market. The zinc soap of palm oil was made based on saponification number. Palm oil is measured for its saponification number and the KOH added is proportional to the saponification number. In order to protect palm oil, zinc chloride (ZnCl₂) is added in an amount equal to the KOH required to soak the oil, which is determined by the outcomes of reaction stoichiometric calculations. Palm oil was put into a glass beaker and incubated in a water bath at 90 °C. KOH that has been dissolved in ethanol is added to hot oil and stirred until the oil is completely hydrolyzed. Next, the ZnCl₂ solution was added and mixed continuously until a paste formed. The final step is to remove the remaining KOH by adding water and washing using a centrifuge. This process produces cream soap called zinc palm oil soap (ZPOS). The nutrient content of ZPOS is 24.36% ether extract, 4.2% crude fiber, 4.94% Zn, and gross energy 5257 kcal/kg.

The basal feed consists of forage and concentrates containing CP 14% and TDN 63%, formulated for feeding lactating dairy cows with a body weight 400 kg, milk yield 15 kg, and fat content 3.5% (National Research Council, 1988). The feed was composed of corn straw, soybean hulls, rice bran, pollard, cassava waste meal, coconut meal, soybean meal, and molasses. The composition of ingredients and nutrient content of the basal feed are shown in Table 1.

Table 1. Ingredients and chemical composition of experimental diet (dry matter basis)

Items	Composition
Ingredient:	-
Corn straw	33.38
Soybean hull	12.25
Rice bran	7.42
Pollard	9.32
Cassava waste meal	9.93
Coconut meal	17.01
Soybean meal	6.98
Molasses	3.00
Vitamin and mineral mixture	0.80
Nutrient composition:	
Dry matter (DM), %	84.68
Ash, %DM	8.63
Crude protein, %DM	14.32
Ether extract, %DM	4.43
Crude fiber, %DM	20.02
Calcium, %DM	0.33
Phosphor, %DM	0.28
Zinc, mg/kg DM	16.93
Neutral detergent fiber, %DM	35.51
Acid detergent fiber, %DM	14.77
Total digestible nutrient (TDN) ¹ , %	63.15

Note: 'Total digestible nutrients (TDN) were calculated using TDN (%DM). TDN = -17.2649 + 1.2120(PK) + 0.8352(BETN) + 2.4637(LK) + 0.4475(SK), according to Wardeh (1981).

In Vitro Experiment

The experiment was designed using a completely randomized design with four treatments and five replications. The treatments tested were T0= basal diet without supplementation, T1= basal diet + 5% palm oil (PO), T2= basal diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO), and T3= basal diet + 5% ZPOS. Rumen liquid as a source of inoculum was taken from three female goats with fistulas that belong to the Faculty of Animal and Agricultural Sciences Diponegoro University, and were homogenized. The goats were given a dietary trial following the ration for in vitro substrate for one week before rumen liquid was collected. Rumen liquid was collected before morning feeding from a fistulated rumen. The rumen liquid was filtered using cheesecloth and placed into a 39 °C flask under anaerobic conditions.

In vitro experiments were carried out according to the method of Tilley & Terry (1963). In the fermenter tube, 0.55 g of feed samples from each treatment were added, followed by 40 mL of McDaugall's solution and 10 mL of rumen liquid. The fermenter cylinder was flowed by CO₂ gas and closed to anaerobic conditions. The fermenter tube was incubated at a 39 °C water temperature.

Nutrient Digestibility

The digestibility of nutrients, including dry matter (DMD), organic matter (OMD), crude protein (CPD),

ether extract (EED), and crude fiber (CFD) were measured through two stages of incubation, namely fermentative and enzymatic. In the first stage, the fermenter tube was incubated at 39 °C water temperature for 2x24 hours, and the process was stopped by immersing the fermenter tube in ice water for 20 minutes. Then, the tube was centrifuged for 15 minutes at a speed of 3,000 rpm, and the supernatant was discarded. In the second stage, the HCl pepsin solution was added 50 mL into the tube and incubated again for 2x24 hours in a 39 °C water temperature under aerobic conditions. The sample was filtered with Whatman No.41 filter paper using a vacuum pump. The filter results were analyzed for DM, Ash, CP, EE and C, NDF, and ADF (AOAC, 2012) to calculate nutrient digestibility values. Fermentation is also carried out without feed samples, which are called blanks. Nutrient digestibility samples are calculated by the formula:

Nutrient digestibility (%)=

{[Nutrient sample, g - (Nutrient residue, g - Nutrient blank, g)] / Nutrient sample, g} x 100

pH Value, VFA, NH₂, and Methane Production

The process of measuring pH, VFA, and NH₃ followed the same procedure as that for nutrient digestibility, but the fermentation stopped at the 4-hour mark. After centrifuging the fermenter tube at 3,000 rpm for 15 minutes, the supernatant was taken to measure the rumen pH, NH₃, and total and partial VFA concentrations. A digital pH meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample was tested three times. NH3 levels were determined using a spectrophotometer, employing a spectrophotometric method based on the catalyzed endophenol reaction to form a stable blue compound (Chaney & Marbach, 1962). Cottyn & Boucque (1968) reported that gas chromatography was used to quantify the generation of partial VFAs (acetic acid, propionate, and butyrate). A milliliter of 95%-97% H₂SO₄ was combined with a 10 mL incubation sample. A milliliter of the sample combination was mixed with 0.0003 g of dehydrated sulfosalicylate. After that, the mixture was centrifuged for 10 minutes at 7 °C at 12,000 rpm. The samples were ready for gas chromatography identification.

The methane gas concentration and energy conversion efficiency were determined by calculating the VFA stoichiometry, which was the estimation using the formula of Orskov & Ryle (1990). The formula used for methane concentration was Methane (mM)= 0.5a - 0.25p + 0.5b, where a, p, and b are moles of acetic, propionic, and butyric acids, respectively. The efficiency of conversion of hexose energy to VFA was calculated based on the stoichiometry of the carbohydrate fermentation reaction from hexose to VFA (acetate, propionate, and butyrate). The calculation formula used was:

E (%)= [(0.622 pA + 1.091 pP + 1.558 pB) / (pA + pP + 2pB)] x 100

Where E is energy, and pA, pP, and pB are the proportions of acetic, propionic, and butyric acids.

Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid

To calculate protozoa, microbial protein and fatty acid concentrations in the rumen liquid, the fermentation process was carried out for 24 hours. The populations of protozoa were calculated following the procedures of Ogimoto & Imai (1981). The solution used was trypan blue formalin saline (TBFS), made from a mixture of 100 mL 35% formaldehyde, 2 g trypan blue, 8 g NaCl, and 900 mL distilled water. The protozoa population was carried out on each treatment rumen fluid mixed with Trypan Blue Formalin Saline (TBFS) solution with a ratio of 5:1. The counting chamber with a thickness of 0.1 mm was dripped with 2 drops of the mixture. The area of the smallest box was 0.0625 mm, totaling 16 boxes with a box area of 5 boxes read. The number of protozoa was calculated by using a microscope at magnification 100 times. The formula used for total population of protozoa was: [1 / (0.1 x 0.0625 x 16 x 5)] x 1000 x DF x C, where C is protozoa population in the counting chamber and DF is diluent factor the specimen.

Measurement of rumen liquid protein microbes using the method of Makkar et al. (1982) on the principle of gradual centrifugation. The fatty acid profile of rumen liquid was analyzed using a gas chromatograph (Model GC-14A, Shimadzu Corporation, Kyoto, Japan). Samples were stored at -20 °C until analysis. Following the method of Cocks & Rede (1966), the fatty acid composition was determined by converting oil to fatty acid methyl esters. This involved adding 950 µL of n-hexane, 50 mg of oil, and 50 µL of sodium methoxide. The peaks of the fatty acid methyl esters were identified by comparing their retention times with those of authentic standards. The relative percentage of each fatty acid was calculated based on its peak area relative to the total peak area of all fatty acids in the sample. Fatty acids were categorized into short-chain fatty acids (SCFA) as having fewer than six carbon atoms, medium chain fatty acids (MCFA) ranging from C6 to C12, and long-chain fatty acids (LCFA), which are greater than C12 (Wang et al., 2020).

Statistical Analysis

The data were analyzed using a completely randomized design in SPSS 16. Duncan's Multiple Range Test with significance was set at p<0.05 to compare treatments when a significant effect was observed.

RESULTS

Feed Fermentability in The Rumen

Detailed rumen feed fermentation parameters can be seen in Table 2. The pH levels in all treatments were not significantly different and were in the normal range of 6.75-6.82. Supplementation of 5% PO (T1) had an effect on reducing the number of protozoa and microbial proteins compared to the control and other treatments (p<0.05). On the other hand, 5% partial ZPOS (T2) and 5% ZPOS (T3) supplementation caused a decrease in NH3 concentration and an increase in VFA production compared to the control and 5% PO supplementation (p<0.05).

Nutrient Digestibility

Table 3 presents the nutrient digestibility due to 5% PO, 5% partial ZPOS, and 5% ZPOS supplementation. All treatments did not show significant differences in dry matter (DMD), organic matter (OMD), and crude protein (CPD) digestibility, but there were significant differences (p<0.05) in ether extract digestibility (EED), crude fiber digestibility (CFD), neutral detergent fiber digestibility (NDFD), and acid detergent fiber digestibility (ADFD). Both supplementation of 5% PO (T1), 5% partial ZPOS (T2), and 5% ZPOS (T3) increased EED, but fiber digestibility (CFD, NDFD, and ADFD) was only increased by 5% partial ZPOS supplementation (T2), while 5% PO and 5% ZPOS supplementation did not differ from the control.

Relative Proportion of VFA

Table 4 shows the partial VFA and methane production in rumen liquid. Supplementation of 5% PO, 5% partial ZPOS, and 5% ZPOS) significantly influenced (p<0.05) acetate, propionate, butyrate, the A/P ratio, and methane but did not impact the efficiency of hexose energy conversion into VFA. The relative proportion of VFAs in this study was 59%–62% acetic acid, 24%–29% propionic acid, and 12%–13% butyric acid. Both 5% partial ZPOS (T2) and 5% ZPOS supplementation increased acetate, propionate, and butyrate compared to 5% PO supplementation (T1) and the control (T0). Conversely, A/P ratio and methane production decreased with 5% PO and 5% partial ZPOS supplementation. The efficiency of hexose energy conversion into VFA between treatments was not significantly different.

Table 2. In vitro feed fermentability in rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Variables –		Treat	CEM			
variables	TO	T1	T2	T3	SEM	p-Value
pН	6.76	6.75	6.73	6.82	0.018	0.224
Protozoa (10 ³ cell/mL)	98.14ª	32.57°	82.83 ^{ab}	69.31 ^b	0.044	0.000
Microbial protein (mg/mL)	13.01ª	9.37 ^b	13.37ª	11.41^{ab}	0.469	0.002
NH ³ (mM)	14.06 ^a	14.45 ^a	9.64 ^b	10.36 ^b	0.543	0.000
VFA (mM)	87.52 ^b	101.78 ^b	164.38ª	157.89ª	8.134	0.000

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

X7		Treatr	SEM	a Value		
Variables	Т0	T1	T2	T3	JEIVI	p-Value
Dry matter (%)	64.06	63.82	67.20	69.24	0.85	0.054
Organic matter (%)	69.16	65.89	69.65	69.98	0.632	0.068
Crude protein (%)	68.69	67.99	66.39	65.11	0.569	0.100
Ether extract (%)	88.45 ^b	94.34ª	93.22ª	92.35ª	0.587	0.000
Crude fiber (%)	54.46 ^b	51.46 ^b	73.63ª	66.11 ^{ab}	3.057	0.020
Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03 ^a	64.62 ^{ab}	2.830	0.006
Acid detergent fiber (%)	45.12 ^b	44.56 ^b	65.81ª	53.76 ^{ab}	2.704	0.006

Table 3. In vitro nutrient digestibility in rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Table 4. In vitro VFA and methane production in rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Variables		Treat	SEM			
variables	T0	T1	T2	Т3	SEIVI	p-Value
Acetate (mM)	41.17 ^b	51.10 ^a	59.31ª	65.80ª	2.579	0.000
Propionate (mM)	15.91°	25.41 ^b	28.73ª	29.89ª	1.348	0.000
Butyrate (mM)	8.73 ^b	10.28 ^b	12.55ª	14.20 ^a	0.546	0.000
A/P	2.59ª	2.01 ^b	2.06 ^b	2.20 ^b	0.061	0.000
Methan (mM)	31.87 ^a	28.04 ^b	28.58 ^b	29.57 ^{ab}	0.489	0.014
Efficiency of energy conversion (%)	73.05	73.19	74.74	74.47	0.357	0.226

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Fatty Acids in Rumen Liquid

Table 5 outlines the fatty acid composition in rumen liquid. Supplementation of 5% PO (T1), 5% partial ZPOS (T2), and 5% ZPOS (T3) supplementation decreased significantly (p<0.05) short-chain fatty acids (SCFA). The long chain fatty acids (LCFA), especially palmitate (C16:0), increased, but stearate (C18:0) decreased by all treatments (p<0.05). Unsaturated fatty acids (USFA), particularly trans 11 C18:1, cis 9 C18:1, C18:2, C20:5 (EPA), and C22:6 (DHA), increased by 5% partial ZPOS (T2) and 5% ZPOS (T3) supplementation.

These fatty acids are classified into various categories, including short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs), saturated fatty acids (SFAs), unsaturated fatty acids (USFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). According to Table 6, the diets supplemented with 5% PO, 5% partial ZPOS, and 5% ZPOS decreased SCFAs compared to the control diet (p<0.05) but increased LCFA. SFAs showed an increase in control and 5% PO supplementation demonstrated an ability to elevate USFAs. Notably, the 5% partial 5% ZPOS and 5% ZPOS supplementation increased MUFAs and PUFAs than the other treatments.

DISCUSSION

Feed Fermentability

The pH is one of the crucial factors in assessing rumen health. The findings indicated that adding palm oil and protected palm oil Zn soap did not disrupt the rumen fermentation process. Palm oil contains high palmitic acid, which actually supports the growth of rumen bacteria (Sears *et al.*, 2024). Apart from being high in palmitate content, palm oil is also high in unsaturated fatty acids (oleic acids), palm oil protection causes unsaturated fatty acids to escape rumen microbial biohydrogenation so that negative effects on the rumen environment can be eliminated. Similar results have been reported in other studies, such as those conducted by Adeyemi *et al.* (2015), Amanullah *et al.* (2022), and Roy *et al.* (2017).

The reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil, particularly palmitic acids (C16:0). According to Rahman *et al.* (2022), palm oil contains about 44% palmitic acid. It has been reported that supplementation of LCFA in the form of palmitate (C16:0) and stearate (C18:0) resulted in a decrease in the protozoa population, although the effect of the decrease was not as strong as MCFA, especially capric acids (C10:0) and lauric acid (C12:0). (Matsumoto *et al.*, 1991). The decrease is caused by the inability of protozoa to digest fat because they do not have lipolytic enzymes; as a result, the addition of oil can interfere with the metabolic activity of protozoa and subsequently cause the number of protozoa to decrease (Hartanto *et al.*, 2017).

Ibrahim *et al.* (2021) discovered that supplementing with palm oil altered the rumen microbial population in ruminants, potentially affecting their overall protein synthesis capability. Sears *et al.* (2024) reported that oleic acid significantly reduces Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting in decreased

Table 5. In vitro proportion of fatty acid	s in rumen liquid with supplem	nentation of zinc palm oil s	soap (ZPOS) (% fat)
--	--------------------------------	------------------------------	---------------------

Fatty acids		SEM				
Fatty acids	TO	T1	T2	Т3	5EIVI	p-Value
Short-chain fatty acids (SCFA)						
C4	7.34 ^a	5.34 ^b	5.27 ^b	2.36 ^c	0.435	0.000
Medium chain fatty acids (SCFA)						
C6	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C8, caprylic	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C10, capric	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C12, lauric	1.38	1.15	1.22	1.20	0.044	0.299
Long-chain fatty acids (LCFA)						
C13	0.3ª	0.17^{a}	<0.1 ^b	<0.1 ^b	0.030	0.000
C14, myristic	2.19	1.85	2.30	1.68	0.063	0.054
C14:1	1.00	0.50	0.57	0.44	0.072	0.053
C15,	0.51	0.75	0.36	0.33	0.056	0.055
C15:1	0.34	0.23	0.16	0.21	0.025	0.051
C16, palmitic	22.03ь	29.34ª	29.23ª	31.14ª	0.854	0.000
C16:1, n7	1.12 ^b	1.04 ^b	1.36 ab	1.5^{a}	0.058	0.005
C17	0.39	0.23	0.23	0.28	0.025	0.052
C17:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18, stearic	40.13 ^a	30.74 ^b	23.17 ^b	21.5 ^b	2.198	0.002
trans 11 C18:1	12.55°	17.84^{b}	26.16 ^a	28.05ª	1.476	0.834
cis 9 C18:1, oleic	1.09 ^b	1.43 ^b	1.99ª	1.83ª	0.099	0.000
C18:2	1.04 ^c	1.31 ^{bc}	1.6 ^{ab}	1.86ª	0.084	0.000
C18:3	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18:3, omega 6	0.22 ^b	0.26 ^b	0.45 ^a	0.53ª	0.032	0.000
C18:3, gamma linolenic	0.79ª	<0.1°	0.38 ^b	0.41 ^b	0.064	0.000
C20	1.31	0.83	0.64	0.67	0.050	0.058
cis 11 C20:1	0.16 ^b	0.59ª	0.31 ^b	0.23 ^b	0.041	0.000
cis 11-14 C20:2	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C20:3	< 0.1	< 0.1	<0.1	< 0.1	-	-
C20:4, arachidonic	0.48^{a}	<0.1 ^b	<0.1 ^b	<0.1 ^b	0.048	0.000
C20:5, EPA	0.07 ^c	0.55 ^b	0.59 ^b	0.76 ^{ab}	0.069	0.000
C21	1.38	0.31	0.20	0.26	0.017	0.000
C22, behenic	0.94ª	0.43 ^{ab}	0.23 ^b	0.25ь	0.042	0.050
C22:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C22:6, DHA	3.19 ^b	4.81ª	4.57ª	4.42 ^a	0.159	0.000
C24	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C24:1, nervonic omega 9	< 0.1	< 0.1	< 0.1	< 0.1	-	-

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Table 6. *In vitro* proportion of short-chain, long-chain, saturated, and unsaturated fatty acids in rumen liquid with supplementation of zinc palm oil soap (ZPOS) (% fat)

Estimate and a		Treat	SEM	57.1		
Fatty acids	TO	T1	T2	T3	SEIVI	p-Value
SCFA	7.34ª	5.34 ^b	5.27 ^b	2.36°	0.453	0.000
MCFA	1.38ª	1.15 ^b	1.22 ^b	1.20 ^b	0.028	0.009
LCFA	91.23°	93.41 ^b	93.50 ^b	96.35ª	0.443	0.000
SFA	77.9ª	71.14 ^b	61.85°	59.67°	1.766	0.000
USFA	22.05°	28.76 ^b	38.14ª	40.24ª	1.722	0.000
MUFA	16.26 ^c	21.63 ^b	30.55ª	32.26ª	1.531	0.000
PUFA	5.79°	7.13 ^b	7.59ª	7.98ª	0.201	0.000

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). SCFA= short-chain fatty acids, MCFA= medium-chain fatty acids, LCFA= long-chain fatty acids, SFA= saturated fatty acids, USFA= unsaturated fatty acids, MUFA= monounsaturated fatty acids, PUFA= polyunsaturated fatty acids. T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

protein synthesis. The use of ZPOS protection, both 5% partial ZPOS (T2) and 5% ZPOS (T3) can mitigate the harmful effects of unsaturated fatty acids, enabling microbes to develop as effectively as in the control group.

Yanza *et al.* (2021) found that ruminants given protected medium chain fatty acids (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to the increased propionate production. Propionate is formed from the breakdown of glycerol during fat hydrolysis. The NH₃ concentration in the T2 treatment was the lowest among all treatments, while microbial protein production was the highest. This indicates that NH₃ is utilized for microbial protein synthesis (Getabalew & Negash, 2020).

Nutrient Digestibility

The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were unaffected by 5% PO supplementation, indicating that this level of supplementation is safe for rumen microbial growth. These results are consistent with previous research, which found that 6% supplementation with vegetable oils (olive oil, sunflower oil, and linseed oil) yielded OMD, NDFD, and ADFD values comparable to the control, although linseed oil resulted in higher digestibility than sunflower oil (Vargas-bello-p et al., 2020). The effect of oil supplementation on digestibility is highly dependent on the nutrient composition of the feed and the fatty acid profile of the oil. The experimental feed in this study, characterized by high fiber content and low ADF (13.77%), supports the proliferation of cellulolytic microbes. A high-fiber diet may mitigate the potential negative impact of oil on fiber digestion by rumen microbes (Benchaar et al., 2015). Both non-protected (T1) and protected (T2 and T3) palm oil increased EED, supporting the conclusion that palm oil can be used as an energy supplement without compromising rumen feed fermentability.

A notable finding from this research is that both partial and total Zn soap supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and ADFD. This effect is likely due to the fat and Zn content in palm oil. Palm oil contains high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki *et al.*, 2015). Research by Sears *et al.* (2024) indicates an increase in Prevotella and Fibrobacter populations in response to palmitic acid supplementation. This suggests that cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby increasing energy availability for metabolic processes. Furthermore, Zn is crucial for various metabolic functions in rumen microbes.

Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain *et al.*, 2016; Uniyal *et al.*, 2017). It is indispensable for preserving the structural and functional integrity of over 2000 transcription factors and 300 enzymes. It can

be contended that virtually all metabolic pathways are reliant, to varying degrees, on at least one Zn-dependent protein (Ranasinghe *et al.*, 2015). Recent research by Fellner *et al.* (2021) elucidated that Zn supplementation precipitated increased acetate production and a heightened acetate/propionate ratio. This delineates an augmented fiber digestion process facilitated by cellulolytic bacteria, consequent to heightened microbial protein synthesis. This conclusion aligns with findings indicating elevated levels of microbial protein compared to PO supplementation (P1), specifically 13.37 (T2) and 11.41 (T3) versus 9.37 mg/mL in the P1 treatment (Table 3).

Relative Proportion of VFA

The relative proportion of acetate observed is slightly lower than that reported by Anzhany et al. (2024), which ranged from 69% to 72%, while the proportions of propionate and butyrate are comparatively higher. According to Amanullah et al. (2022), palm oil supplementation modifies the rumen environment, thereby altering the ratio of cellulolytic to amylolytic microbes. Both 5% partial ZPOS and 5% ZPOS supplementation resulted in significantly higher acetate production compared to non-protected palm oil (p<0.05). Acetate is the yield of digestion of fibrous carbohydrates by cellulolytic bacteria, which means that the increase in acetate is in line with the increase in the number of cellulolytic bacteria in the rumen. This is likely related to the decreasing protozoa population resulting from oil supplementation. Protozoa are predators of bacteria (Dayyani et al., 2013), so a decrease in the number of protozoa will increase the number of bacteria because it reduces competition for nutrients. These findings are consistent with the increased microbial protein levels observed with 5% partial ZPOS and 5% ZPOS supplementation, suggesting enhanced bacterial growth. Zinc (Zn) is an essential trace mineral cofactor for over 300 enzymes, including DNA and RNA polymerase, which play a role in protein synthesis (Franco et al., 2024; Sloup et al., 2017).

The increase in propionate in the ZPOS supplementation treatment resulted from the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids from rumen bio-hydrogenation and increasing the duodenal flows of mono and polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with studies showing that ZPOS supplementation leads to an increase in protozoan populations (Table 4). Zn supplementation has been associated with shifts in rumen volatile fatty acid profiles, notably an increase in propionate and a reduction in the acetate-to-propionate ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane production and a lower A/P ratio is advantageous, as higher propionate levels provide a carbon framework and synthetic energy for livestock.

Fatty Acids in Rumen Liquid

Previous research showed that oil supplementation caused a decrease in the proportion of short-chain fatty acids in rumen fluid while increasing the presence of long-chain fatty acids. Mancini et al. (2015) argue that this transition is caused by the large number of longchain fatty acids (LSFA) in palm oil, namely 98.3%, and the remaining 1.7% consists of short-chain fatty acids (SCFA). Among long-chain fatty acids, which account for 98.3% of the total, almost half (49.9%) are unsaturated fatty acids (USFA), consisting of 39.2% monounsaturated fatty acids (MUFA) and 10.5% polyunsaturated fatty acids (PUFA). The prevalence of saturated fatty acids (SFA) in palm oil contributes to the range of rumen saturated fatty acid levels, where PO supplementation treatment (T1) has higher SFA levels compared to ZPOS supplementation, namely T1 71.14%, T2 61.85%, and T3 59.67% (Table 6).

Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities, namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and glycerol. Unsaturated fatty acids, including oleic acid (18:1), undergo a biohydrogenation process, being converted into saturated fatty acids, stearic acid (18:0), in the rumen by bacteria (Buccioni et al., 2012). Harvatine et al. (2009), who tracked the biohydrogenation process of oleic acid, found that oleate in the rumen can change into trans and cis forms because rumen microbes produce cis/trans isomerase enzymes, and there is an isomerase that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate) to trans 18:1. The dominant biohydrogenation process that occurs in the rumen is bacteria hydrogenate polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 fatty acids, then trans 18:1 fatty acids into stearic acid (18:0).

study's findings, Consistent with our supplementation with ZPOS (T2 and T3) resulted in elevated levels of trans18:1 and cis 18:1, alongside reduced stearate (18:0) concentrations compared to non-protected oil supplementation (T1). Amanullah et al. (2022) conducted a comparative analysis involving corn oil, linseed oil, and Ca salt (protected C18:2n-6), revealing that protected fatty acids (Ca Salt) led to diminished stearate levels but higher proportions of MUFA and PUFA. These findings are consistent with the research by Satir et al. (2023), which demonstrated that 3% protected palm oil supplementation can increase the content of palmitic acid (SFA) and oleic acid (MUFA). Stearate is the final product of the biohydrogenation of oleic, linoleic, and linolenic acids. This indicates a complete inhibition of the biohydrogenation process in the ZPOS treatment. The protection of polyunsaturated fatty acids through saponification involves bonding the carboxyl group with Zn, resulting in the inhibition of isomerization, which is a prerequisite for the hydrogenation of unsaturated fatty acids into saturated fatty acids. This is reflected in the higher proportion of MUFA in the ZPOS treatment compared to PO and the control (Table 6). The substantial presence of PUFA, notably EPA and DHA, underscores Zn's role in the elongation and desaturation process, facilitated

by the formation of arachidonic acid (20:4) through delta-6-desaturase (D6D) and delta-5-desaturase (D5D) enzymes (Ridgway, 2016). Zn's indispensability is further highlighted as a pivotal mineral cofactor for D6D and D5D enzymes (Noland & Drisko, 2020).

Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen, particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZPOS supplementation holds the potential for enhancing the quality of meat and milk fat.

CONCLUSION

Based on the results of this research, it can be concluded that zinc soap from palm oil (ZPOS) can be developed as a source of energy and organic Zn. Supplementation of 5% partial ZPOS (3.75% ZPOS + 1.25% PO) is better than 5% ZPOS. The beneficial effects of this supplementation are increased fiber digestibility, VFA, LCFA, and USFA, as well as decreased methane production in the rumen. Further investigation is required to test the ZPOS on dairy cows *in vivo*.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest with any financial, personal, or other relationships with other people or organizations related to the material discussed in the manuscript.

ACKNOWLEDGEMENT

The research was funded by the Faculty of Animal and Agricultural Science, Diponegoro University in 2023, with contract number 4/UN7.F5/HK/III/2023.

REFERENCES

- Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A. Karsani, & A. Q. Sazili. 2015. Influence of carotino oil on *in vitro* rumen fermentation, metabolism and apparent biohydrogenation of fatty acids. Anim. Sci. J. 86:270–278. https://doi.org/10.1111/asj.12279
- Amanullah, S. M., S. Lee, D. Hand, Vi. Paradhipta, Y. Joo, D. Kim, P. Seong, S. Jeong, & S. Kim. 2022. Impact of oil sources on *in vitro* fermentation, microbes, greenhouse gas, and fatty acid profile in the rumen. Fermentation 8:242. https://doi.org/10.3390/fermentation8050242
- Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid biohydrogenation, fermentation, and digestibility of ration containing napier and king grass with different harvest ages and altitudes: *In vitro* study. Trop. Anim. Sci. J. 47:68–78. https://doi.org/10.5398/tasj.2024.47.1.68
- **AOAC.** 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical Chemists, Washington, DC.
- Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, n balance, and milk production. J. Dairy Sci. 98:7993–8008. https://doi.org/10.3168/jds.2015-9398

- Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 174:1–25. https://doi.org/10.1016/j.anifeedsci.2012.02.009
- **Cabatit, B. C.** 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press, Manila.
- Chaney, A. L. & E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130– 132. https://doi.org/10.1093/clinchem/8.2.130
- Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of zinc-bearing palygorskite on rumen fermentation *in vitro*. Asian-Australas. J. Anim. Sci. 32:63–71. https://doi. org/10.5713/ajas.17.0920
- Cocks, L. V. & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis. Academic Press, London.
- Cottyn, B. G. & C. V. Boucque. 1968. Rapid method for the gaschromatographic determination of volatile fatty acids in rumen fluid. J. Agric. Food Chem. 16:105–107. https://doi. org/10.1021/jf60155a002
- Duffy, R., M. Yin, & L. E. Redding. 2023. A review of the impact of dietary zinc on livestock health. J. Trace Elem. Miner. 5:100085. https://doi.org/10.1016/j.jtemin.2023.100085
- Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The effect of total or partial protected vegetable oil supplementation on *in vitro* digestibility, feed fermentability and energy efficiency. Buletin Peternakan 43:171–178. https://doi. org/10.21059/buletinpeternak.v43i3.43231
- Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of supplemental zinc on ruminal fermentation in continuous cultures. Appl. Anim. Sci. 37:27–32. https://doi. org/10.15232/aas.2020-02104
- Franco, C. E., E. L. Rients, F. E. Diaz, S. L. Hansen, & J. L. McGill. 2024. Dietary zinc supplementation in steers modulates labile zinc concentration and zinc transporter gene expression in circulating immune cells. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-024-04123-6
- Gao, J., M. Wang, Y. Jing, X. Sun, T. Wu, & L. Shi. 2016. Impacts of the unsaturation degree of long-chain fatty acids on the volatile fatty acid profiles of rumen microbial fermentation in goats *in vitro*. J. Integr. Agric. 15:2827–2833. https://doi. org/10.1016/S2095-3119(16)61418-1
- Getabalew, M. & A. Negash. 2020. Nitrogen metabolism and recycling in ruminant animals : A review college of agricultural and natural resources science. Academic J. Nutr. 9:29–38.
- Harvatine, K. J., Y. R. Boisclair, & D. E. Bauman. 2009. Recent advances in the regulation of milk fat synthesis. Animal 3:40–54. https://doi.org/10.1017/S1751731108003133
- Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The role of zinc, manganse and copper in rumen metabolism and immune function: A review article. Open J. Anim. Sci. 6:304–324. https://doi.org/10.4236/ojas.2016.64035
- Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, S. C. L. Candyrine, W. N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: A review. Trop. Anim. Health Prod. 53:422. https://doi.org/10.1007/s11250-021-02863-4
- Khaskheli, A. A. & L. Chou. 2020. Evaluation of fatty acids composition, metabolizable energy, nutrients digestibility of crude palm oil fat crystals in Turkeys. Anim. Feed Sci. Technol. 270:114734. https://doi.org/10.1016/j. anifeedsci.2020.114734
- Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of sunflower oil supplementation as unsaturated fatty acid source on rumen fermentability and performance of lactating Garut ewes. J. Indones. Trop. Anim. Agric. 42:185–193. https://doi.org/10.14710/ jitaa.42.3.185-193

- Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physicochemical properties, fatty acid profile and nutrition in palm oil. J. Paramed. Sci. 6:117–134.
- Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170–2173. https://doi.org/10.3168/ jds.S0022-0302(82)82477-6
- Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono. 2015. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules 20:17339–17361. https://doi.org/10.3390/ molecules200917339
- Martínez, A. & D. C. Church. 1970. Effect of various mineral rumen cellulose elements. J. Anim. Sci. 31:982–990. https:// doi.org/10.2527/jas1970.315982x
- Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of different vegetable oils on *in vitro* ruminal fermentability and nutrient digestibility in ettawah crossbred goat. Anim. Prod. 21:22–29. https://doi.org/10.20884/1.jap.2019.21.1.689
- Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan. 2015. The role of ciliate protozoa in the rumen. Fron. Microbiol. 6:1313. https://doi. org/10.3389/fmicb.2015.01313
- Noland, D. & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition Therapy. In: L. Wagner (Eds). Humana Press, Switzerland. https://doi. org/10.1007/978-3-030-30730-1
- Ogimoto, K. & S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Societies Press, Tokyo.
- Oliveira, A. S. 2015. Meta-analysis of feeding trials to estimate energy requirements of dairy cows under tropical condition. Anim. Feed Sci. Technol. 210:94–103. https://doi. org/10.1016/j.anifeedsci.2015.10.006
- **Orskov, E. R. & M. Ryle.** 1990. Energy Nutrition in Ruminants. Elsevier Applied Science, London (UK).
- Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui J. B. Bessa, & L. Lopes-dacosta. 2022. Effects of feeding rumen-protected linseed fat to postpartum dairy cows on plasma n-3 polyunsaturated fatty acid concentrations and metabolic and reproductive parameters. J. Dairy Sci. 105:361–374. https://doi. org/10.3168/jds.2021-20674
- Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The composition of fatty acids in several vegetable oils from Indonesia. Biodiversitas 23:2167–2176. https://doi. org/10.13057/biodiv/d230452
- Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P. Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr. Metab. 12:26. https://doi.org/10.1186/s12986-015-0023-4
- Ranaweera, K. K. T. N., M. B. P. K. Mahipala, & W. M. P. B. Weerasinghe. 2020. Evaluation of energy balance in tropical and temperate crossbred dairy cows at postpartum transition stage: A case study. Trop. Agric. Res. 31:12-20. https://doi.org/10.4038/tar.v31i2.8363
- Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. In R.S. McLeod (Eds). Elsevier, Netherland.
- Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration *in vitro*. Vet. World 10:11–16. https://doi.org/10.14202/vetworld.2017.11-16
- Santos, F. A., G. S. Cruz, F. A. Vieira, B. R. S. Queiroz, C. D. T. Freitas, F. P. Mesquita, & P. F. N. Souza. 2022. Systematic review of antiprotozoal potential of antimicrobial peptides. Acta Trop. 236:106675. https://doi.org/10.1016/j. actatropica.2022.106675
- Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of adding rumen - protected palm oil in diet on milk fatty

12. Pengiriman hasil proofreading dari penulis (via OJS)

p-ISSN 2615-787X e-ISSN 2615-790X

Accredited by Directorate General of Higher Education, Research, and Technology, Republic of Indonesia, No. 225/E/KPT/2022

Supplementation of Zinc Palm Oil Soap Improves Feed Fermentability and Unsaturated Fatty Acid Profile in Rumen Liquid

A. Muktiani*, W. Widiyanto, & N. S. Pandupuspitasari

Faculty of Animal and Agricultural Science, Diponegoro University Jalan Prof. Jacup Rais, Kampus Universitas Diponegoro, Semarang 65145, Indonesia *Corresponding author: anismuktiani@lecturer.undip.ac.id (Received 13-06-2024; Revised 26-07-2024; Accepted 29-07-2024)

ABSTRACT

This study aimed to evaluate the effects of energy and organic zinc supplements, specifically zinc palm oil soap (ZPOS), on digestibility and unsaturated fatty acid profiles in vitro. The study used a completely randomized design with 4 treatments and 5 replications. The treatments were: T0= basal diet without supplementation, T1= basal diet + 5% palm oil (PO), T2= basal diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO), and T3= basal diet + 5% ZPOS. The inoculum source was rumen liquid from three fistulated female dairy goats and was homogenized. The goats were fed ration consisting of corn straw, soybean hulls, and concentrate containing total digestible nutrients (TDN) 63%, crude protein (CP) 14%, and neutral detergent fiber (NDF) 35%. Results showed that both 5% partial ZPOS and 5% ZPOS supplementation (T2 and T3) resulted in the increase of total volatile fatty acids (VFA), acetate, propionate, butyrate, unsaturated fatty acids (USFA) and a decrease in the ratio of acetate/propionate (A/P) compared to the control and supplementation of 5% PO (p<0.05). Supplementation of 5% partial ZPOS (T2) is better than 5% ZPOS because increased the digestibility of ether extract (EE), crude fiber (CF), NDF, and acids detergent fiber (ADF) (p<0.05) and decreased of methane compared to the control (p<0.05). In conclusion, adding 5% partial ZPOS (3.5% ZPOS and 1.5% PO) increases fiber digestibility, VFA, LCFA, and USFA concentration, and decreases methane production in the rumen liquid.

Keywords: fermentability; rumen; zinc palm oil soap; unsaturated fatty acids

INTRODUCTION

Early lactation dairy cows experience negative energy balance due to the decreased dry matter intake (DMI). Lack or energy imbalance during that period may reduce production and stimulate metabolic disorders (Khotijah *et al.*, 2017). This opinion was supported by Tribout *et al.* (2023), who stated that energy deficiency has detrimental effects, including low production and weight loss in livestock. To address this challenge, especially during early lactation, providing additional energy sources through supplements is crucial.

Energy requirements of dairy livestock in tropical regions differ from those in temperate areas due to varying environmental conditions and feed resources. Assessment of the energy balance of tropical and temperate crossbred dairy cows revealed significant differences in serum metabolic profiles, indicating variations in energy utilization and metabolism between the two regions (Ranaweera *et al.*, 2020). Meta-analysis research by Oliveira (2015) found that tropical dairy cows (*Bos taurus x Bos indicus*) have lower MEm requirements and net energy efficiency for milk production is also lower than temperate dairy cattle (*Bos taurus*). Therefore, understanding these differences is

very important to optimize feeding strategies, especially energy source supplementation in dairy livestock.

Palm oil is one of the most promising vegetable oils for energy sources, with a gross energy (GE) content of 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is also easily obtainable, resistant to rancidity, and affordable. The global price of palm oil is \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/ mt, coconut oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains saturated fatty acids in the form of palmitic acid 44% and unsaturated fatty acids, specifically oleic acid 39.2% and linoleic acid 10.1% (Mancini et al., 2015). High levels of palmitate are very beneficial for cellulolytic bacteria. Cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby increasing energy availability for metabolic processes. Recent findings by Sears et al. (2024) showed an increase in Prevotella and Fibrobacter populations in response to palmitic acid supplementation. Unsaturated fatty acids in palm oil (oleic acids and linoleic acids) contribute to energy efficiency by reducing protozoa (Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane (CH4) production and the acetate/propionate (A/P) ratio by increasing propionate production (Gao et al., 2016).

However, oil supplementation also has negative effects. Fat particles tend to coat feed particles, which hinders the adhesion of rumen microbes, especially fibrolytic microbes, thus reducing fiber digestibility (Sears *et al.*, 2024). Rumen microbes defend against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014).

Palm oil contains 49.3% unsaturated fatty acids, and when used in animal feed, it must be protected to prevent biohydrogenation and to avoid disrupting rumen bacterial fermentation. It is essential to safeguard unsaturated fatty acids to preserve their biological roles, such as being structural components of bio membranes that uphold membrane integrity. Polyunsaturated fatty acids in biomembranes ensure membrane fluidity, which supports the activity of membrane-bound enzymes, facilitates intracellular metabolism and enhances nutrient utilization efficiency in livestock (Pereira *et al.*, 2022).

One effective method is saponification, which involves binding the free carboxyl groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is commonly used for this purpose (Satir *et al.*, 2023; Vargas-bello-p *et al.*, 2020). In addition to Ca, NaOH can also be used to protect the oil (Wulandari *et al.*, 2020). However, the use of zinc (Zn) minerals for this purpose has not been widely explored.

Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 enzymes and acts as a structural component in gene expression and signal transduction (Franco *et al.*, 2024). Zn is also a major component of metalloenzymes, lactate dehydrogenase, carboxypeptidase, and DNA and RNA polymerase, which play a role in protein synthesis (Sloup *et al.*, 2017). Studies *in vitro* observed that supplementing Zn in ruminal fluid increased cellulose digestibility (Martínez & Church, 1970) and concentrations of total volatile fatty acids (VFA) and acetate (Chen *et al.*, 2019). Research by Wang *et al.* (2021) found that supplementation of 20-30 mg/kg DM Zn sulfate led to increasing nutrient digestibility and ruminal fermentation.

In livestock, Zn is involved in multiple biochemical functions such as bone metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and spermatogenesis, immune function, and appetite regulation via its effects on the central nervous system (Duffy *et al.*, 2023). The most important of Zn are cellular respiration, cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup *et al.*, 2017). The use of Zn as an oil protector has a double benefit, namely protecting unsaturated fatty acids from the biohydrogenation process of rumen microbes while providing Zn needed for rumen microbes and livestock, whose needs increase in the early stages of lactation.

In vitro Zn soap supplementation research was conducted by Faizah *et al.* (2019), which compared the supplementation of 10% Zn soap from palm oil with 10% corn. Supplementation with 10% palm oil Zn soap

resulted in no different digestibility of dry matter, organic matter, and crude fiber, but the total production of VFA, acetate, and A/P ratio was higher compared to corn oil Zn soap. High acetate levels strongly support the synthesis of milk fatty acids in dairy cows, especially short-chain fatty acids. However, no research has explored the contribution of long-chain fatty acids, MUFA, and PUFA due to Zn soap supplementation as a precursor for the synthesis of long fatty acids and unsaturated fatty acids in milk. This study's results provided information regarding the concentration of longchain fatty acids, MUFA and PUFA in the rumen due to Zn soap supplementation, which is expected to be used as a consideration in providing unsaturated fatty acids to increase the production and health of dairy livestock.

This study aimed to evaluate the effects of energy and organic Zn supplements, specifically Zn palm oil soap (ZPOS), on fermentability, digestibility, and unsaturated fatty acid profiles *in vitro*. The benefit of this research is identifying the most efficient form of palm oil supplementation to increase energy supply and improve the profile of unsaturated fatty acids in the rumen without disrupting feed fermentability *in vitro*. Discover the most effective use of palm oil in providing an alternative solution to energy and Zn deficiencies in dairy cattle.

MATERIALS AND METHODS

Zinc Soap and Feed Preparation

The preparation of Zn soap was carried out according to Cabatit (1979). The palm oil used to make Zn soap was a commercial palm oil that was generally sold on the market. The zinc soap of palm oil was made based on saponification number. Palm oil is measured for its saponification number and the KOH added is proportional to the saponification number. In order to protect palm oil, zinc chloride (ZnCl₂) is added in an amount equal to the KOH required to soak the oil, which is determined by the outcomes of reaction stoichiometric calculations. Palm oil was put into a glass beaker and incubated in a water bath at 90 °C. KOH that has been dissolved in ethanol is added to hot oil and stirred until the oil is completely hydrolyzed. Next, the ZnCl₂ solution was added and mixed continuously until a paste formed. The final step is to remove the remaining KOH by adding water and washing using a centrifuge. This process produces cream soap called zinc palm oil soap (ZPOS). The nutrient content of ZPOS is 24.36% ether extract, 4.2% crude fiber, 4.94% Zn, and gross energy 5257 kcal/kg.

The basal feed consists of forage and concentrates containing CP 14% and TDN 63%, formulated for feeding lactating dairy cows with a body weight 400 kg, milk yield 15 kg, and fat content 3.5% (National Research Council, 1988). The feed was composed of corn straw, soybean hulls, rice bran, pollard, cassava waste meal, coconut meal, soybean meal, and molasses. The composition of ingredients and nutrient content of the basal feed are shown in Table 1.

Table 1. Ingredients and chemical composition of experimental diet (dry matter basis)

Items	Composition
Ingredient:	-
Corn straw	33.38
Soybean hull	12.25
Rice bran	7.42
Pollard	9.32
Cassava waste meal	9.93
Coconut meal	17.01
Soybean meal	6.98
Molasses	3.00
Vitamin and mineral mixture	0.80
Nutrient composition:	
Dry matter (DM), %	84.68
Ash, %DM	8.63
Crude protein, %DM	14.32
Ether extract, %DM	4.43
Crude fiber, %DM	20.02
Calcium, %DM	0.33
Phosphor, %DM	0.28
Zinc, mg/kg DM	16.93
Neutral detergent fiber, %DM	35.51
Acid detergent fiber, %DM	14.77
Total digestible nutrient (TDN) ¹ , %	63.15

Note: 'Total digestible nutrients (TDN) were calculated using TDN (%DM). TDN = -17.2649 + 1.2120(PK) + 0.8352(BETN) + 2.4637(LK) + 0.4475(SK), according to Wardeh (1981).

In Vitro Experiment

The experiment was designed using a completely randomized design with four treatments and five replications. The treatments tested were T0= basal diet without supplementation, T1= basal diet + 5% palm oil (PO), T2= basal diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO), and T3= basal diet + 5% ZPOS. Rumen liquid as a source of inoculum was taken from three female goats with fistulas that belong to the Faculty of Animal and Agricultural Sciences Diponegoro University, and were homogenized. The goats were given a dietary trial following the ration for in vitro substrate for one week before rumen liquid was collected. Rumen liquid was collected before morning feeding from a fistulated rumen. The rumen liquid was filtered using cheesecloth and placed into a 39 °C flask under anaerobic conditions.

In vitro experiments were carried out according to the method of Tilley & Terry (1963). In the fermenter tube, 0.55 g of feed samples from each treatment were added, followed by 40 mL of McDaugall's solution and 10 mL of rumen liquid. The fermenter cylinder was flowed by CO₂ gas and closed to anaerobic conditions. The fermenter tube was incubated at a 39 °C water temperature.

Nutrient Digestibility

The digestibility of nutrients, including dry matter (DMD), organic matter (OMD), crude protein (CPD),

ether extract (EED), and crude fiber (CFD) were measured through two stages of incubation, namely fermentative and enzymatic. In the first stage, the fermenter tube was incubated at 39 °C water temperature for 2x24 hours, and the process was stopped by immersing the fermenter tube in ice water for 20 minutes. Then, the tube was centrifuged for 15 minutes at a speed of 3,000 rpm, and the supernatant was discarded. In the second stage, the HCl pepsin solution was added 50 mL into the tube and incubated again for 2x24 hours in a 39 °C water temperature under aerobic conditions. The sample was filtered with Whatman No.41 filter paper using a vacuum pump. The filter results were analyzed for DM, Ash, CP, EE and C, NDF, and ADF (AOAC, 2012) to calculate nutrient digestibility values. Fermentation is also carried out without feed samples, which are called blanks. Nutrient digestibility samples are calculated by the formula:

Nutrient digestibility (%)=

{[Nutrient sample, g - (Nutrient residue, g - Nutrient blank, g)] / Nutrient sample, g} x 100

pH Value, VFA, NH₂, and Methane Production

The process of measuring pH, VFA, and NH₃ followed the same procedure as that for nutrient digestibility, but the fermentation stopped at the 4-hour mark. After centrifuging the fermenter tube at 3,000 rpm for 15 minutes, the supernatant was taken to measure the rumen pH, NH₃, and total and partial VFA concentrations. A digital pH meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample was tested three times. NH3 levels were determined using a spectrophotometer, employing a spectrophotometric method based on the catalyzed endophenol reaction to form a stable blue compound (Chaney & Marbach, 1962). Cottyn & Boucque (1968) reported that gas chromatography was used to quantify the generation of partial VFAs (acetic acid, propionate, and butyrate). A milliliter of 95%-97% H₂SO₄ was combined with a 10 mL incubation sample. A milliliter of the sample combination was mixed with 0.0003 g of dehydrated sulfosalicylate. After that, the mixture was centrifuged for 10 minutes at 7 °C at 12,000 rpm. The samples were ready for gas chromatography identification.

The methane gas concentration and energy conversion efficiency were determined by calculating the VFA stoichiometry, which was the estimation using the formula of Orskov & Ryle (1990). The formula used for methane concentration was Methane (mM)= 0.5a - 0.25p + 0.5b, where a, p, and b are moles of acetic, propionic, and butyric acids, respectively. The efficiency of conversion of hexose energy to VFA was calculated based on the stoichiometry of the carbohydrate fermentation reaction from hexose to VFA (acetate, propionate, and butyrate). The calculation formula used was:

E (%)= [(0.622 pA + 1.091 pP + 1.558 pB) / (pA + pP + 2pB)] x 100

Where E is energy, and pA, pP, and pB are the proportions of acetic, propionic, and butyric acids.

Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid

To calculate protozoa, microbial protein and fatty acid concentrations in the rumen liquid, the fermentation process was carried out for 24 hours. The populations of protozoa were calculated following the procedures of Ogimoto & Imai (1981). The solution used was trypan blue formalin saline (TBFS), made from a mixture of 100 mL 35% formaldehyde, 2 g trypan blue, 8 g NaCl, and 900 mL distilled water. The protozoa population was carried out on each treatment rumen fluid mixed with Trypan Blue Formalin Saline (TBFS) solution with a ratio of 5:1. The counting chamber with a thickness of 0.1 mm was dripped with 2 drops of the mixture. The area of the smallest box was 0.0625 mm, totaling 16 boxes with a box area of 5 boxes read. The number of protozoa was calculated by using a microscope at magnification 100 times. The formula used for total population of protozoa was: [1 / (0.1 x 0.0625 x 16 x 5)] x 1000 x DF x C, where C is protozoa population in the counting chamber and DF is diluent factor the specimen.

Measurement of rumen liquid protein microbes using the method of Makkar et al. (1982) on the principle of gradual centrifugation. The fatty acid profile of rumen liquid was analyzed using a gas chromatograph (Model GC-14A, Shimadzu Corporation, Kyoto, Japan). Samples were stored at -20 °C until analysis. Following the method of Cocks & Rede (1966), the fatty acid composition was determined by converting oil to fatty acid methyl esters. This involved adding 950 µL of n-hexane, 50 mg of oil, and 50 µL of sodium methoxide. The peaks of the fatty acid methyl esters were identified by comparing their retention times with those of authentic standards. The relative percentage of each fatty acid was calculated based on its peak area relative to the total peak area of all fatty acids in the sample. Fatty acids were categorized into short-chain fatty acids (SCFA) as having fewer than six carbon atoms, medium chain fatty acids (MCFA) ranging from C6 to C12, and long-chain fatty acids (LCFA), which are greater than C12 (Wang et al., 2020).

Statistical Analysis

The data were analyzed using a completely randomized design in SPSS 16. Duncan's Multiple Range Test with significance was set at p<0.05 to compare treatments when a significant effect was observed.

RESULTS

Feed Fermentability in The Rumen

Detailed rumen feed fermentation parameters can be seen in Table 2. The pH levels in all treatments were not significantly different and were in the normal range of 6.75-6.82. Supplementation of 5% PO (T1) had an effect on reducing the number of protozoa and microbial proteins compared to the control and other treatments (p<0.05). On the other hand, 5% partial ZPOS (T2) and 5% ZPOS (T3) supplementation caused a decrease in NH3 concentration and an increase in VFA production compared to the control and 5% PO supplementation (p<0.05).

Nutrient Digestibility

Table 3 presents the nutrient digestibility due to 5% PO, 5% partial ZPOS, and 5% ZPOS supplementation. All treatments did not show significant differences in dry matter (DMD), organic matter (OMD), and crude protein (CPD) digestibility, but there were significant differences (p<0.05) in ether extract digestibility (EED), crude fiber digestibility (CFD), neutral detergent fiber digestibility (NDFD), and acid detergent fiber digestibility (ADFD). Both supplementation of 5% PO (T1), 5% partial ZPOS (T2), and 5% ZPOS (T3) increased EED, but fiber digestibility (CFD, NDFD, and ADFD) was only increased by 5% partial ZPOS supplementation (T2), while 5% PO and 5% ZPOS supplementation did not differ from the control.

Relative Proportion of VFA

Table 4 shows the partial VFA and methane production in rumen liquid. Supplementation of 5% PO, 5% partial ZPOS, and 5% ZPOS) significantly influenced (p<0.05) acetate, propionate, butyrate, the A/P ratio, and methane but did not impact the efficiency of hexose energy conversion into VFA. The relative proportion of VFAs in this study was 59%–62% acetic acid, 24%–29% propionic acid, and 12%–13% butyric acid. Both 5% partial ZPOS (T2) and 5% ZPOS supplementation increased acetate, propionate, and butyrate compared to 5% PO supplementation (T1) and the control (T0). Conversely, A/P ratio and methane production decreased with 5% PO and 5% partial ZPOS supplementation. The efficiency of hexose energy conversion into VFA between treatments was not significantly different.

Table 2. In vitro feed fermentability in rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Variables –		Treat	CEM			
variables	TO	T1	T2	T3	SEM	p-Value
pН	6.76	6.75	6.73	6.82	0.018	0.224
Protozoa (10 ³ cell/mL)	98.14ª	32.57°	82.83 ^{ab}	69.31 ^b	0.044	0.000
Microbial protein (mg/mL)	13.01ª	9.37 ^b	13.37ª	11.41^{ab}	0.469	0.002
NH ³ (mM)	14.06 ^a	14.45 ^a	9.64 ^b	10.36 ^b	0.543	0.000
VFA (mM)	87.52 ^b	101.78 ^b	164.38ª	157.89ª	8.134	0.000

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

X7		Treatr	SEM	a Value		
Variables	Т0	T1	T2	T3	JEIVI	p-Value
Dry matter (%)	64.06	63.82	67.20	69.24	0.85	0.054
Organic matter (%)	69.16	65.89	69.65	69.98	0.632	0.068
Crude protein (%)	68.69	67.99	66.39	65.11	0.569	0.100
Ether extract (%)	88.45 ^b	94.34ª	93.22ª	92.35ª	0.587	0.000
Crude fiber (%)	54.46 ^b	51.46 ^b	73.63ª	66.11 ^{ab}	3.057	0.020
Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03 ^a	64.62 ^{ab}	2.830	0.006
Acid detergent fiber (%)	45.12 ^b	44.56 ^b	65.81ª	53.76 ^{ab}	2.704	0.006

Table 3. In vitro nutrient digestibility in rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Table 4. In vitro VFA and methane production in rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Variables		Treat	SEM			
variables	T0	T1	T2	Т3	SEIVI	p-Value
Acetate (mM)	41.17 ^b	51.10 ^a	59.31ª	65.80ª	2.579	0.000
Propionate (mM)	15.91°	25.41 ^b	28.73ª	29.89ª	1.348	0.000
Butyrate (mM)	8.73 ^b	10.28 ^b	12.55ª	14.20 ^a	0.546	0.000
A/P	2.59ª	2.01 ^b	2.06 ^b	2.20 ^b	0.061	0.000
Methan (mM)	31.87 ^a	28.04 ^b	28.58 ^b	29.57 ^{ab}	0.489	0.014
Efficiency of energy conversion (%)	73.05	73.19	74.74	74.47	0.357	0.226

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Fatty Acids in Rumen Liquid

Table 5 outlines the fatty acid composition in rumen liquid. Supplementation of 5% PO (T1), 5% partial ZPOS (T2), and 5% ZPOS (T3) supplementation decreased significantly (p<0.05) short-chain fatty acids (SCFA). The long chain fatty acids (LCFA), especially palmitate (C16:0), increased, but stearate (C18:0) decreased by all treatments (p<0.05). Unsaturated fatty acids (USFA), particularly trans 11 C18:1, cis 9 C18:1, C18:2, C20:5 (EPA), and C22:6 (DHA), increased by 5% partial ZPOS (T2) and 5% ZPOS (T3) supplementation.

These fatty acids are classified into various categories, including short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs), saturated fatty acids (SFAs), unsaturated fatty acids (USFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). According to Table 6, the diets supplemented with 5% PO, 5% partial ZPOS, and 5% ZPOS decreased SCFAs compared to the control diet (p<0.05) but increased LCFA. SFAs showed an increase in control and 5% PO supplementation demonstrated an ability to elevate USFAs. Notably, the 5% partial 5% ZPOS and 5% ZPOS supplementation increased MUFAs and PUFAs than the other treatments.

DISCUSSION

Feed Fermentability

The pH is one of the crucial factors in assessing rumen health. The findings indicated that adding palm oil and protected palm oil Zn soap did not disrupt the rumen fermentation process. Palm oil contains high palmitic acid, which actually supports the growth of rumen bacteria (Sears *et al.*, 2024). Apart from being high in palmitate content, palm oil is also high in unsaturated fatty acids (oleic acids), palm oil protection causes unsaturated fatty acids to escape rumen microbial biohydrogenation so that negative effects on the rumen environment can be eliminated. Similar results have been reported in other studies, such as those conducted by Adeyemi *et al.* (2015), Amanullah *et al.* (2022), and Roy *et al.* (2017).

The reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil, particularly palmitic acids (C16:0). According to Rahman *et al.* (2022), palm oil contains about 44% palmitic acid. It has been reported that supplementation of LCFA in the form of palmitate (C16:0) and stearate (C18:0) resulted in a decrease in the protozoa population, although the effect of the decrease was not as strong as MCFA, especially capric acids (C10:0) and lauric acid (C12:0). (Matsumoto *et al.*, 1991). The decrease is caused by the inability of protozoa to digest fat because they do not have lipolytic enzymes; as a result, the addition of oil can interfere with the metabolic activity of protozoa and subsequently cause the number of protozoa to decrease (Hartanto *et al.*, 2017).

Ibrahim *et al.* (2021) discovered that supplementing with palm oil altered the rumen microbial population in ruminants, potentially affecting their overall protein synthesis capability. Sears *et al.* (2024) reported that oleic acid significantly reduces Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting in decreased

Table 5. In vitro proportion of fatty acid	ls in rumen liquid with suppler	nentation of zinc palm oil so	oap (ZPOS) (% fat)
--	---------------------------------	-------------------------------	--------------------

Fatty acids		– SEM p-V				
Fatty acids	TO	T1	T2	Т3	5EIVI	p-Value
Short-chain fatty acids (SCFA)						
C4	7.34 ^a	5.34 ^b	5.27 ^b	2.36 ^c	0.435	0.000
Medium chain fatty acids (SCFA)						
C6	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C8, caprylic	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C10, capric	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C12, lauric	1.38	1.15	1.22	1.20	0.044	0.299
Long-chain fatty acids (LCFA)						
C13	0.3ª	0.17^{a}	<0.1 ^b	<0.1 ^b	0.030	0.000
C14, myristic	2.19	1.85	2.30	1.68	0.063	0.054
C14:1	1.00	0.50	0.57	0.44	0.072	0.053
C15,	0.51	0.75	0.36	0.33	0.056	0.055
C15:1	0.34	0.23	0.16	0.21	0.025	0.051
C16, palmitic	22.03ь	29.34ª	29.23ª	31.14ª	0.854	0.000
C16:1, n7	1.12 ^b	1.04 ^b	1.36 ab	1.5^{a}	0.058	0.005
C17	0.39	0.23	0.23	0.28	0.025	0.052
C17:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18, stearic	40.13 ^a	30.74 ^b	23.17 ^b	21.5 ^b	2.198	0.002
trans 11 C18:1	12.55°	17.84 ^b	26.16 ^a	28.05ª	1.476	0.834
cis 9 C18:1, oleic	1.09 ^b	1.43 ^b	1.99ª	1.83ª	0.099	0.000
C18:2	1.04 ^c	1.31 ^{bc}	1.6 ^{ab}	1.86ª	0.084	0.000
C18:3	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18:3, omega 6	0.22 ^b	0.26 ^b	0.45 ^a	0.53ª	0.032	0.000
C18:3, gamma linolenic	0.79ª	<0.1°	0.38 ^b	0.41 ^b	0.064	0.000
C20	1.31	0.83	0.64	0.67	0.050	0.058
cis 11 C20:1	0.16 ^b	0.59ª	0.31 ^b	0.23 ^b	0.041	0.000
cis 11-14 C20:2	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C20:3	< 0.1	< 0.1	<0.1	< 0.1	-	-
C20:4, arachidonic	0.48ª	<0.1 ^b	<0.1 ^b	<0.1 ^b	0.048	0.000
C20:5, EPA	0.07 ^c	0.55 ^b	0.59 ^b	0.76^{ab}	0.069	0.000
C21	1.38	0.31	0.20	0.26	0.017	0.000
C22, behenic	0.94ª	0.43 ^{ab}	0.23 ^b	0.25ь	0.042	0.050
C22:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C22:6, DHA	3.19 ^b	4.81ª	4.57ª	4.42 ^a	0.159	0.000
C24	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C24:1, nervonic omega 9	< 0.1	< 0.1	< 0.1	< 0.1	-	-

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Table 6. *In vitro* proportion of short-chain, long-chain, saturated, and unsaturated fatty acids in rumen liquid with supplementation of zinc palm oil soap (ZPOS) (% fat)

Eatter aside		Treat	ments		SEM	a Value
Fatty acids	TO	T1	T2	T3	SEIVI	p-Value
SCFA	7.34ª	5.34 ^b	5.27 ^b	2.36°	0.453	0.000
MCFA	1.38ª	1.15 ^b	1.22 ^b	1.20 ^b	0.028	0.009
LCFA	91.23°	93.41 ^b	93.50 ^b	96.35ª	0.443	0.000
SFA	77.9ª	71.14 ^b	61.85°	59.67°	1.766	0.000
USFA	22.05°	28.76 ^b	38.14ª	40.24ª	1.722	0.000
MUFA	16.26 ^c	21.63 ^b	30.55ª	32.26ª	1.531	0.000
PUFA	5.79°	7.13 ^b	7.59ª	7.98ª	0.201	0.000

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). SCFA= short-chain fatty acids, MCFA= medium-chain fatty acids, LCFA= long-chain fatty acids, SFA= saturated fatty acids, USFA= unsaturated fatty acids, MUFA= monounsaturated fatty acids, PUFA= polyunsaturated fatty acids. T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

protein synthesis. The use of ZPOS protection, both 5% partial ZPOS (T2) and 5% ZPOS (T3) can mitigate the harmful effects of unsaturated fatty acids, enabling microbes to develop as effectively as in the control group.

Yanza *et al.* (2021) found that ruminants given protected medium chain fatty acids (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to the increased propionate production. Propionate is formed from the breakdown of glycerol during fat hydrolysis. The NH₃ concentration in the T2 treatment was the lowest among all treatments, while microbial protein production was the highest. This indicates that NH₃ is utilized for microbial protein synthesis (Getabalew & Negash, 2020).

Nutrient Digestibility

The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were unaffected by 5% PO supplementation, indicating that this level of supplementation is safe for rumen microbial growth. These results are consistent with previous research, which found that 6% supplementation with vegetable oils (olive oil, sunflower oil, and linseed oil) yielded OMD, NDFD, and ADFD values comparable to the control, although linseed oil resulted in higher digestibility than sunflower oil (Vargas-bello-p et al., 2020). The effect of oil supplementation on digestibility is highly dependent on the nutrient composition of the feed and the fatty acid profile of the oil. The experimental feed in this study, characterized by high fiber content and low ADF (13.77%), supports the proliferation of cellulolytic microbes. A high-fiber diet may mitigate the potential negative impact of oil on fiber digestion by rumen microbes (Benchaar et al., 2015). Both non-protected (T1) and protected (T2 and T3) palm oil increased EED, supporting the conclusion that palm oil can be used as an energy supplement without compromising rumen feed fermentability.

A notable finding from this research is that both partial and total Zn soap supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and ADFD. This effect is likely due to the fat and Zn content in palm oil. Palm oil contains high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki *et al.*, 2015). Research by Sears *et al.* (2024) indicates an increase in Prevotella and Fibrobacter populations in response to palmitic acid supplementation. This suggests that cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby increasing energy availability for metabolic processes. Furthermore, Zn is crucial for various metabolic functions in rumen microbes.

Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain *et al.*, 2016; Uniyal *et al.*, 2017). It is indispensable for preserving the structural and functional integrity of over 2000 transcription factors and 300 enzymes. It can

be contended that virtually all metabolic pathways are reliant, to varying degrees, on at least one Zn-dependent protein (Ranasinghe *et al.*, 2015). Recent research by Fellner *et al.* (2021) elucidated that Zn supplementation precipitated increased acetate production and a heightened acetate/propionate ratio. This delineates an augmented fiber digestion process facilitated by cellulolytic bacteria, consequent to heightened microbial protein synthesis. This conclusion aligns with findings indicating elevated levels of microbial protein compared to PO supplementation (T1), specifically 13.37 (T2) and 11.41 (T3) versus 9.37 mg/mL in the T1 treatment (Table 3).

Relative Proportion of VFA

The relative proportion of acetate observed is slightly lower than that reported by Anzhany et al. (2024), which ranged from 69% to 72%, while the proportions of propionate and butyrate are comparatively higher. According to Amanullah et al. (2022), palm oil supplementation modifies the rumen environment, thereby altering the ratio of cellulolytic to amylolytic microbes. Both 5% partial ZPOS and 5% ZPOS supplementation resulted in significantly higher acetate production compared to non-protected palm oil (p<0.05). Acetate is the yield of digestion of fibrous carbohydrates by cellulolytic bacteria, which means that the increase in acetate is in line with the increase in the number of cellulolytic bacteria in the rumen. This is likely related to the decreasing protozoa population resulting from oil supplementation. Protozoa are predators of bacteria (Dayyani et al., 2013), so a decrease in the number of protozoa will increase the number of bacteria because it reduces competition for nutrients. These findings are consistent with the increased microbial protein levels observed with 5% partial ZPOS and 5% ZPOS supplementation, suggesting enhanced bacterial growth. Zinc (Zn) is an essential trace mineral cofactor for over 300 enzymes, including DNA and RNA polymerase, which play a role in protein synthesis (Franco et al., 2024; Sloup et al., 2017).

The increase in propionate in the ZPOS supplementation treatment resulted from the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids from rumen bio-hydrogenation and increasing the duodenal flows of mono and polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with studies showing that ZPOS supplementation leads to an increase in protozoan populations (Table 4). Zn supplementation has been associated with shifts in rumen volatile fatty acid profiles, notably an increase in propionate and a reduction in the acetate-to-propionate ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane production and a lower A/P ratio is advantageous, as higher propionate levels provide a carbon framework and synthetic energy for livestock.

Fatty Acids in Rumen Liquid

Previous research showed that oil supplementation caused a decrease in the proportion of short-chain fatty acids in rumen fluid while increasing the presence of long-chain fatty acids. Mancini et al. (2015) argue that this transition is caused by the large number of longchain fatty acids (LSFA) in palm oil, namely 98.3%, and the remaining 1.7% consists of short-chain fatty acids (SCFA). Among long-chain fatty acids, which account for 98.3% of the total, almost half (49.9%) are unsaturated fatty acids (USFA), consisting of 39.2% monounsaturated fatty acids (MUFA) and 10.5% polyunsaturated fatty acids (PUFA). The prevalence of saturated fatty acids (SFA) in palm oil contributes to the range of rumen saturated fatty acid levels, where PO supplementation treatment (T1) has higher SFA levels compared to ZPOS supplementation, namely T1 71.14%, T2 61.85%, and T3 59.67% (Table 6).

Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities, namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and glycerol. Unsaturated fatty acids, including oleic acid (18:1), undergo a biohydrogenation process, being converted into saturated fatty acids, stearic acid (18:0), in the rumen by bacteria (Buccioni et al., 2012). Harvatine et al. (2009), who tracked the biohydrogenation process of oleic acid, found that oleate in the rumen can change into trans and cis forms because rumen microbes produce cis/trans isomerase enzymes, and there is an isomerase that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate) to trans 18:1. The dominant biohydrogenation process that occurs in the rumen is bacteria hydrogenate polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 fatty acids, then trans 18:1 fatty acids into stearic acid (18:0).

study's findings, Consistent with our supplementation with ZPOS (T2 and T3) resulted in elevated levels of trans18:1 and cis 18:1, alongside reduced stearate (18:0) concentrations compared to non-protected oil supplementation (T1). Amanullah et al. (2022) conducted a comparative analysis involving corn oil, linseed oil, and Ca salt (protected C18:2n-6), revealing that protected fatty acids (Ca Salt) led to diminished stearate levels but higher proportions of MUFA and PUFA. These findings are consistent with the research by Satir et al. (2023), which demonstrated that 3% protected palm oil supplementation can increase the content of palmitic acid (SFA) and oleic acid (MUFA). Stearate is the final product of the biohydrogenation of oleic, linoleic, and linolenic acids. This indicates a complete inhibition of the biohydrogenation process in the ZPOS treatment. The protection of polyunsaturated fatty acids through saponification involves bonding the carboxyl group with Zn, resulting in the inhibition of isomerization, which is a prerequisite for the hydrogenation of unsaturated fatty acids into saturated fatty acids. This is reflected in the higher proportion of MUFA in the ZPOS treatment compared to PO and the control (Table 6). The substantial presence of PUFA, notably EPA and DHA, underscores Zn's role in the elongation and desaturation process, facilitated

by the formation of arachidonic acid (20:4) through delta-6-desaturase (D6D) and delta-5-desaturase (D5D) enzymes (Ridgway, 2016). Zn's indispensability is further highlighted as a pivotal mineral cofactor for D6D and D5D enzymes (Noland & Drisko, 2020).

Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen, particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZPOS supplementation holds the potential for enhancing the quality of meat and milk fat.

CONCLUSION

Based on the results of this research, it can be concluded that zinc soap from palm oil (ZPOS) can be developed as a source of energy and organic Zn. Supplementation of 5% partial ZPOS (3.75% ZPOS + 1.25% PO) is better than 5% ZPOS. The beneficial effects of this supplementation are increased fiber digestibility, VFA, LCFA, and USFA, as well as decreased methane production in the rumen. Further investigation is required to test the ZPOS on dairy cows *in vivo*.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest with any financial, personal, or other relationships with other people or organizations related to the material discussed in the manuscript.

ACKNOWLEDGEMENT

The research was funded by the Faculty of Animal and Agricultural Science, Diponegoro University in 2023, with contract number 4/UN7.F5/HK/III/2023.

REFERENCES

- Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A. Karsani, & A. Q. Sazili. 2015. Influence of carotino oil on *in vitro* rumen fermentation, metabolism and apparent biohydrogenation of fatty acids. Anim. Sci. J. 86:270–278. https://doi.org/10.1111/asj.12279
- Amanullah, S. M., S. Lee, D. Hand, Vi. Paradhipta, Y. Joo, D. Kim, P. Seong, S. Jeong, & S. Kim. 2022. Impact of oil sources on *in vitro* fermentation, microbes, greenhouse gas, and fatty acid profile in the rumen. Fermentation 8:242. https://doi.org/10.3390/fermentation8050242
- Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid biohydrogenation, fermentation, and digestibility of ration containing napier and king grass with different harvest ages and altitudes: *In vitro* study. Trop. Anim. Sci. J. 47:68–78. https://doi.org/10.5398/tasj.2024.47.1.68
- **AOAC.** 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical Chemists, Washington, DC.
- Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, n balance, and milk production. J. Dairy Sci. 98:7993–8008. https://doi.org/10.3168/jds.2015-9398

- Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 174:1–25. https://doi.org/10.1016/j.anifeedsci.2012.02.009
- **Cabatit, B. C.** 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press, Manila.
- Chaney, A. L. & E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130– 132. https://doi.org/10.1093/clinchem/8.2.130
- Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of zinc-bearing palygorskite on rumen fermentation *in vitro*. Asian-Australas. J. Anim. Sci. 32:63–71. https://doi. org/10.5713/ajas.17.0920
- Cocks, L. V. & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis. Academic Press, London.
- Cottyn, B. G. & C. V. Boucque. 1968. Rapid method for the gaschromatographic determination of volatile fatty acids in rumen fluid. J. Agric. Food Chem. 16:105–107. https://doi. org/10.1021/jf60155a002
- Duffy, R., M. Yin, & L. E. Redding. 2023. A review of the impact of dietary zinc on livestock health. J. Trace Elem. Miner. 5:100085. https://doi.org/10.1016/j.jtemin.2023.100085
- Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The effect of total or partial protected vegetable oil supplementation on *in vitro* digestibility, feed fermentability and energy efficiency. Buletin Peternakan 43:171–178. https://doi. org/10.21059/buletinpeternak.v43i3.43231
- Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of supplemental zinc on ruminal fermentation in continuous cultures. Appl. Anim. Sci. 37:27–32. https://doi. org/10.15232/aas.2020-02104
- Franco, C. E., E. L. Rients, F. E. Diaz, S. L. Hansen, & J. L. McGill. 2024. Dietary zinc supplementation in steers modulates labile zinc concentration and zinc transporter gene expression in circulating immune cells. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-024-04123-6
- Gao, J., M. Wang, Y. Jing, X. Sun, T. Wu, & L. Shi. 2016. Impacts of the unsaturation degree of long-chain fatty acids on the volatile fatty acid profiles of rumen microbial fermentation in goats *in vitro*. J. Integr. Agric. 15:2827–2833. https://doi. org/10.1016/S2095-3119(16)61418-1
- Getabalew, M. & A. Negash. 2020. Nitrogen metabolism and recycling in ruminant animals : A review college of agricultural and natural resources science. Academic J. Nutr. 9:29–38.
- Harvatine, K. J., Y. R. Boisclair, & D. E. Bauman. 2009. Recent advances in the regulation of milk fat synthesis. Animal 3:40–54. https://doi.org/10.1017/S1751731108003133
- Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The role of zinc, manganse and copper in rumen metabolism and immune function: A review article. Open J. Anim. Sci. 6:304–324. https://doi.org/10.4236/ojas.2016.64035
- Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, S. C. L. Candyrine, W. N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: A review. Trop. Anim. Health Prod. 53:422. https://doi.org/10.1007/s11250-021-02863-4
- Khaskheli, A. A. & L. Chou. 2020. Evaluation of fatty acids composition, metabolizable energy, nutrients digestibility of crude palm oil fat crystals in Turkeys. Anim. Feed Sci. Technol. 270:114734. https://doi.org/10.1016/j. anifeedsci.2020.114734
- Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of sunflower oil supplementation as unsaturated fatty acid source on rumen fermentability and performance of lactating Garut ewes. J. Indones. Trop. Anim. Agric. 42:185–193. https://doi.org/10.14710/ jitaa.42.3.185-193

- Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physicochemical properties, fatty acid profile and nutrition in palm oil. J. Paramed. Sci. 6:117–134.
- Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170–2173. https://doi.org/10.3168/ jds.S0022-0302(82)82477-6
- Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono. 2015. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules 20:17339–17361. https://doi.org/10.3390/ molecules200917339
- Martínez, A. & D. C. Church. 1970. Effect of various mineral rumen cellulose elements. J. Anim. Sci. 31:982–990. https:// doi.org/10.2527/jas1970.315982x
- Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of different vegetable oils on *in vitro* ruminal fermentability and nutrient digestibility in ettawah crossbred goat. Anim. Prod. 21:22–29. https://doi.org/10.20884/1.jap.2019.21.1.689
- Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan. 2015. The role of ciliate protozoa in the rumen. Fron. Microbiol. 6:1313. https://doi. org/10.3389/fmicb.2015.01313
- Noland, D. & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition Therapy. In: L. Wagner (Eds). Humana Press, Switzerland. https://doi. org/10.1007/978-3-030-30730-1
- Ogimoto, K. & S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Societies Press, Tokyo.
- Oliveira, A. S. 2015. Meta-analysis of feeding trials to estimate energy requirements of dairy cows under tropical condition. Anim. Feed Sci. Technol. 210:94–103. https://doi. org/10.1016/j.anifeedsci.2015.10.006
- **Orskov, E. R. & M. Ryle.** 1990. Energy Nutrition in Ruminants. Elsevier Applied Science, London (UK).
- Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui J. B. Bessa, & L. Lopes-dacosta. 2022. Effects of feeding rumen-protected linseed fat to postpartum dairy cows on plasma n-3 polyunsaturated fatty acid concentrations and metabolic and reproductive parameters. J. Dairy Sci. 105:361–374. https://doi. org/10.3168/jds.2021-20674
- Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The composition of fatty acids in several vegetable oils from Indonesia. Biodiversitas 23:2167–2176. https://doi. org/10.13057/biodiv/d230452
- Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P. Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr. Metab. 12:26. https://doi.org/10.1186/s12986-015-0023-4
- Ranaweera, K. K. T. N., M. B. P. K. Mahipala, & W. M. P. B. Weerasinghe. 2020. Evaluation of energy balance in tropical and temperate crossbred dairy cows at postpartum transition stage: A case study. Trop. Agric. Res. 31:12-20. https://doi.org/10.4038/tar.v31i2.8363
- Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. In R.S. McLeod (Eds). Elsevier, Netherland.
- Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration *in vitro*. Vet. World 10:11–16. https://doi.org/10.14202/vetworld.2017.11-16
- Santos, F. A., G. S. Cruz, F. A. Vieira, B. R. S. Queiroz, C. D. T. Freitas, F. P. Mesquita, & P. F. N. Souza. 2022. Systematic review of antiprotozoal potential of antimicrobial peptides. Acta Trop. 236:106675. https://doi.org/10.1016/j. actatropica.2022.106675
- Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of adding rumen - protected palm oil in diet on milk fatty

acid profile and lipid health indices in Kivircik ewes. Trop. Anim. Health Prod. 55:159. https://doi.org/10.1007/ s11250-023-03580-w

- Sears, A., F. Hentz, J. de Souza, B. Wenner, Robert E. Ward, & F. Batistel. 2024. Supply of palmitic, stearic, and oleic acid changes rumen fiber digestibility and microbial composition. J. Dairy Sci. 107:902–916. https://doi. org/10.3168/jds.2023-23568
- Shingfield, K. J. & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in Ruminants and Humans. In: B. Sels and A. Philippaerts (Eds). Conjugated Linoleic Acids and Conjugated Vegetable Oils. The Royal Society of Chemistry. https://doi.org/10.1039/9781782620211-00001
- Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in the animal organism: A review. Sci. Agric. Bohem. 48:13–21. https://doi.org/10.1515/ sab-2017-0003
- Swain, P. S., S. B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2:134–141. https://doi.org/10.1016/j.aninu.2016.06.003
- Tilley, J. M. A. & R. A. Terry. 1963. A two-stage technique for the *in vitro* digestion of forage crops. Grass Forage Sci. 18:104–111. https://doi.org/10.1111/j.1365-2494.1963. tb00335.x
- Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P. Faverdin. 2023. Genetic relationships between weight loss in early lactation and daily milk production throughout lactation in holstein cows. J. Dairy Sci. 106:4799–4812. https://doi.org/10.3168/ jds.2022-22813
- Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017. Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in Guinea pigs. Livest. Sci. 204:59–64. https://doi. org/10.1016/j.livsci.2017.08.009

- Vargas-bello-p, E., L. E. Robles-jimenez, R. Ayala-hern, J. Romero-bernal, N. Pescador-salas, & O. Alonso. 2020. Effects of calcium soaps from palm, canola and safflower oils on dry matter intake, nutrient digestibility, milk production, and milk composition in dairy goats. Animals 10:1728. https://doi.org/10.3390/ani10101728
- Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L. Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of zinc sulfate and coated zinc sulfate on lactation performance, nutrient digestion and rumen fermentation in holstein dairy cows. Livest. Sci. 251:104673. https://doi. org/10.1016/j.livsci.2021.104673
- Wang, S., Y. Wang, F. Shahidi, & C. Ho. 2020. Health Effects of Short-Chain, Medium-Chain, and Long-Chain Fatty Acids, Saturated vs Unsaturated and Omega-6 vs Omega-3 Fatty Acids and Trans Fats. In: F. Shahidi (Ed). Bailey's Industrial Oil and Fat Products: 7th ed. John Wiley & Sons, Ltd. https://doi.org/10.1002/047167849X.bio100
- Wardeh, M. F. 1981. Models for Estimating Energy and Protein Utilization for Feeds: All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 4556. Utah State University, Utah, USA. https://doi.org/10.26076/9026-5aad
- World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group - The World Bank, Washington, USA.
- Wulandari, B. P. Widyobroto, & A. Agus. 2020. In vitro digestibility and ruminal fermentation profile of pangola grass (*Digitaria decumbens*) Supplemented with crude palm oil protected by sodium hydroxide. Livestock Research Rural Development. 32. https://www.lrrd.cipav.org.co/ lrrd32/7/wulan32102.html.
- Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, M. Gao, H. Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The effects of dietary medium-chain fatty acids on ruminal methanogenesis and fermentation *in vitro* and *in vivo*: A meta-analysis. J. Anim. Physiol. Anim. Nutr. 105:874–889. https://doi.org/10.1111/jpn.13367

13. Naskah publikasi terbit

p-ISSN 2615-787X e-ISSN 2615-790X Accredited by Directorate General of Higher Education, Research, and Technology, Republic of Indonesia, No. 225/E/KPT/2022 **Tropical Animal Science Journal, September 2024, 47(3):371-380** DOI: https://doi.org/10.5398/tasj.2024.47.3.371 Available online at https://journal.ipb.ac.id/index.php/tasj

Supplementation of Zinc Palm Oil Soap Improves Feed Fermentability and Unsaturated Fatty Acid Profile in Rumen Liquid

A. Muktiani*, W. Widiyanto, & N. S. Pandupuspitasari

Faculty of Animal and Agricultural Science, Diponegoro University Jalan Prof. Jacup Rais, Kampus Universitas Diponegoro, Semarang 65145, Indonesia *Corresponding author: anismuktiani@lecturer.undip.ac.id (Received 13-06-2024; Revised 26-07-2024; Accepted 29-07-2024)

ABSTRACT

This study aimed to evaluate the effects of energy and organic zinc supplements, specifically zinc palm oil soap (ZPOS), on digestibility and unsaturated fatty acid profiles in vitro. The study used a completely randomized design with 4 treatments and 5 replications. The treatments were: T0= basal diet without supplementation, T1= basal diet + 5% palm oil (PO), T2= basal diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO), and T3= basal diet + 5% ZPOS. The inoculum source was rumen liquid from three fistulated female dairy goats and was homogenized. The goats were fed ration consisting of corn straw, soybean hulls, and concentrate containing total digestible nutrients (TDN) 63%, crude protein (CP) 14%, and neutral detergent fiber (NDF) 35%. Results showed that both 5% partial ZPOS and 5% ZPOS supplementation (T2 and T3) resulted in the increase of total volatile fatty acids (VFA), acetate, propionate, butyrate, unsaturated fatty acids (USFA) and a decrease in the ratio of acetate/propionate (A/P) compared to the control and supplementation of 5% PO (p<0.05). Supplementation of 5% partial ZPOS (T2) is better than 5% ZPOS because increased the digestibility of ether extract (EE), crude fiber (CF), NDF, and acids detergent fiber (ADF) (p<0.05) and decreased of methane compared to the control (p<0.05). In conclusion, adding 5% partial ZPOS (3.5% ZPOS and 1.5% PO) increases fiber digestibility, VFA, LCFA, and USFA concentration, and decreases methane production in the rumen liquid.

Keywords: fermentability; rumen; zinc palm oil soap; unsaturated fatty acids

INTRODUCTION

Early lactation dairy cows experience negative energy balance due to the decreased dry matter intake (DMI). Lack or energy imbalance during that period may reduce production and stimulate metabolic disorders (Khotijah *et al.*, 2017). This opinion was supported by Tribout *et al.* (2023), who stated that energy deficiency has detrimental effects, including low production and weight loss in livestock. To address this challenge, especially during early lactation, providing additional energy sources through supplements is crucial.

Energy requirements of dairy livestock in tropical regions differ from those in temperate areas due to varying environmental conditions and feed resources. Assessment of the energy balance of tropical and temperate crossbred dairy cows revealed significant differences in serum metabolic profiles, indicating variations in energy utilization and metabolism between the two regions (Ranaweera *et al.,* 2020). Meta-analysis research by Oliveira (2015) found that tropical dairy cows (*Bos taurus x Bos indicus*) have lower MEm requirements and net energy efficiency for milk production is also lower than temperate dairy cattle (*Bos taurus*). Therefore, understanding these differences is

very important to optimize feeding strategies, especially energy source supplementation in dairy livestock.

Palm oil is one of the most promising vegetable oils for energy sources, with a gross energy (GE) content of 9219 kcal/kg (Khaskheli & Chou, 2020). Palm oil is also easily obtainable, resistant to rancidity, and affordable. The global price of palm oil is \$574 per metric ton (mt), which is cheaper compared to soybean oil at \$684/ mt, coconut oil at \$830/mt, and peanut oil at \$1,584/mt (World Bank, 2020). Palm oil contains saturated fatty acids in the form of palmitic acid 44% and unsaturated fatty acids, specifically oleic acid 39.2% and linoleic acid 10.1% (Mancini et al., 2015). High levels of palmitate are very beneficial for cellulolytic bacteria. Cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby increasing energy availability for metabolic processes. Recent findings by Sears et al. (2024) showed an increase in Prevotella and Fibrobacter populations in response to palmitic acid supplementation. Unsaturated fatty acids in palm oil (oleic acids and linoleic acids) contribute to energy efficiency by reducing protozoa (Muktiani et al., 2020; Vargas-bello-p et al., 2020), reducing methane (CH4) production and the acetate/propionate (A/P) ratio by increasing propionate production (Gao et al., 2016).

However, oil supplementation also has negative effects. Fat particles tend to coat feed particles, which hinders the adhesion of rumen microbes, especially fibrolytic microbes, thus reducing fiber digestibility (Sears *et al.*, 2024). Rumen microbes defend against lipid toxicity by performing biohydrogenation, which converts unsaturated fatty acids into saturated fatty acids in the rumen (Shingfield & Wallace, 2014).

Palm oil contains 49.3% unsaturated fatty acids, and when used in animal feed, it must be protected to prevent biohydrogenation and to avoid disrupting rumen bacterial fermentation. It is essential to safeguard unsaturated fatty acids to preserve their biological roles, such as being structural components of bio membranes that uphold membrane integrity. Polyunsaturated fatty acids in biomembranes ensure membrane fluidity, which supports the activity of membrane-bound enzymes, facilitates intracellular metabolism and enhances nutrient utilization efficiency in livestock (Pereira *et al.*, 2022).

One effective method is saponification, which involves binding the free carboxyl groups of fatty acids with minerals to form fatty acid salts or soaps. Calcium (Ca) is commonly used for this purpose (Satir *et al.*, 2023; Vargas-bello-p *et al.*, 2020). In addition to Ca, NaOH can also be used to protect the oil (Wulandari *et al.*, 2020). However, the use of zinc (Zn) minerals for this purpose has not been widely explored.

Zinc (Zn) is an essential trace mineral that functions as a cofactor for over 300 enzymes and acts as a structural component in gene expression and signal transduction (Franco *et al.*, 2024). Zn is also a major component of metalloenzymes, lactate dehydrogenase, carboxypeptidase, and DNA and RNA polymerase, which play a role in protein synthesis (Sloup *et al.*, 2017). Studies *in vitro* observed that supplementing Zn in ruminal fluid increased cellulose digestibility (Martínez & Church, 1970) and concentrations of total volatile fatty acids (VFA) and acetate (Chen *et al.*, 2019). Research by Wang *et al.* (2021) found that supplementation of 20-30 mg/kg DM Zn sulfate led to increasing nutrient digestibility and ruminal fermentation.

In livestock, Zn is involved in multiple biochemical functions such as bone metabolism, the metabolism of carbohydrates, fats, and proteins, sexual development and spermatogenesis, immune function, and appetite regulation via its effects on the central nervous system (Duffy *et al.*, 2023). The most important of Zn are cellular respiration, cellular use of oxygen, DNA and RNA expression, maintenance of cell membrane integrity, sequestration of free radicals, and protection against lipid peroxidation (Sloup *et al.*, 2017). The use of Zn as an oil protector has a double benefit, namely protecting unsaturated fatty acids from the biohydrogenation process of rumen microbes while providing Zn needed for rumen microbes and livestock, whose needs increase in the early stages of lactation.

In vitro Zn soap supplementation research was conducted by Faizah *et al.* (2019), which compared the supplementation of 10% Zn soap from palm oil with 10% corn. Supplementation with 10% palm oil Zn soap

resulted in no different digestibility of dry matter, organic matter, and crude fiber, but the total production of VFA, acetate, and A/P ratio was higher compared to corn oil Zn soap. High acetate levels strongly support the synthesis of milk fatty acids in dairy cows, especially short-chain fatty acids. However, no research has explored the contribution of long-chain fatty acids, MUFA, and PUFA due to Zn soap supplementation as a precursor for the synthesis of long fatty acids and unsaturated fatty acids in milk. This study's results provided information regarding the concentration of longchain fatty acids, MUFA and PUFA in the rumen due to Zn soap supplementation, which is expected to be used as a consideration in providing unsaturated fatty acids to increase the production and health of dairy livestock.

This study aimed to evaluate the effects of energy and organic Zn supplements, specifically Zn palm oil soap (ZPOS), on fermentability, digestibility, and unsaturated fatty acid profiles *in vitro*. The benefit of this research is identifying the most efficient form of palm oil supplementation to increase energy supply and improve the profile of unsaturated fatty acids in the rumen without disrupting feed fermentability *in vitro*. Discover the most effective use of palm oil in providing an alternative solution to energy and Zn deficiencies in dairy cattle.

MATERIALS AND METHODS

Zinc Soap and Feed Preparation

The preparation of Zn soap was carried out according to Cabatit (1979). The palm oil used to make Zn soap was a commercial palm oil that was generally sold on the market. The zinc soap of palm oil was made based on saponification number. Palm oil is measured for its saponification number and the KOH added is proportional to the saponification number. In order to protect palm oil, zinc chloride (ZnCl₂) is added in an amount equal to the KOH required to soak the oil, which is determined by the outcomes of reaction stoichiometric calculations. Palm oil was put into a glass beaker and incubated in a water bath at 90 °C. KOH that has been dissolved in ethanol is added to hot oil and stirred until the oil is completely hydrolyzed. Next, the ZnCl₂ solution was added and mixed continuously until a paste formed. The final step is to remove the remaining KOH by adding water and washing using a centrifuge. This process produces cream soap called zinc palm oil soap (ZPOS). The nutrient content of ZPOS is 24.36% ether extract, 4.2% crude fiber, 4.94% Zn, and gross energy 5257 kcal/kg.

The basal feed consists of forage and concentrates containing CP 14% and TDN 63%, formulated for feeding lactating dairy cows with a body weight 400 kg, milk yield 15 kg, and fat content 3.5% (National Research Council, 1988). The feed was composed of corn straw, soybean hulls, rice bran, pollard, cassava waste meal, coconut meal, soybean meal, and molasses. The composition of ingredients and nutrient content of the basal feed are shown in Table 1.

Table 1. Ingredients and chemical composition of experimental diet (dry matter basis)

Items	Composition
Ingredient:	
Corn straw	33.38
Soybean hull	12.25
Rice bran	7.42
Pollard	9.32
Cassava waste meal	9.93
Coconut meal	17.01
Soybean meal	6.98
Molasses	3.00
Vitamin and mineral mixture	0.80
Nutrient composition:	
Dry matter (DM), %	84.68
Ash, %DM	8.63
Crude protein, %DM	14.32
Ether extract, %DM	4.43
Crude fiber, %DM	20.02
Calcium, %DM	0.33
Phosphor, %DM	0.28
Zinc, mg/kg DM	16.93
Neutral detergent fiber, %DM	35.51
Acid detergent fiber, %DM	14.77
Total digestible nutrient (TDN) ¹ , %	63.15

Note: 1Total digestible nutrients (TDN) were calculated using TDN (%DM). TDN = -17.2649 + 1.2120(PK) + 0.8352(BETN) + 2.4637(LK) + 0.4475(SK), according to Wardeh (1981).

In Vitro Experiment

The experiment was designed using a completely randomized design with four treatments and five replications. The treatments tested were T0= basal diet without supplementation, T1= basal diet + 5% palm oil (PO), T2= basal diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO), and T3= basal diet + 5% ZPOS. Rumen liquid as a source of inoculum was taken from three female goats with fistulas that belong to the Faculty of Animal and Agricultural Sciences Diponegoro University, and were homogenized. The goats were given a dietary trial following the ration for in vitro substrate for one week before rumen liquid was collected. Rumen liquid was collected before morning feeding from a fistulated rumen. The rumen liquid was filtered using cheesecloth and placed into a 39 °C flask under anaerobic conditions.

In vitro experiments were carried out according to the method of Tilley & Terry (1963). In the fermenter tube, 0.55 g of feed samples from each treatment were added, followed by 40 mL of McDaugall's solution and 10 mL of rumen liquid. The fermenter cylinder was flowed by CO₂ gas and closed to anaerobic conditions. The fermenter tube was incubated at a 39 °C water temperature.

Nutrient Digestibility

The digestibility of nutrients, including dry matter (DMD), organic matter (OMD), crude protein (CPD),

ether extract (EED), and crude fiber (CFD) were measured through two stages of incubation, namely fermentative and enzymatic. In the first stage, the fermenter tube was incubated at 39 °C water temperature for 2x24 hours, and the process was stopped by immersing the fermenter tube in ice water for 20 minutes. Then, the tube was centrifuged for 15 minutes at a speed of 3,000 rpm, and the supernatant was discarded. In the second stage, the HCl pepsin solution was added 50 mL into the tube and incubated again for 2x24 hours in a 39 °C water temperature under aerobic conditions. The sample was filtered with Whatman No.41 filter paper using a vacuum pump. The filter results were analyzed for DM, Ash, CP, EE and C, NDF, and ADF (AOAC, 2012) to calculate nutrient digestibility values. Fermentation is also carried out without feed samples, which are called blanks. Nutrient digestibility samples are calculated by the formula:

Nutrient digestibility (%)=

{[Nutrient sample, g - (Nutrient residue, g - Nutrient blank, g)] / Nutrient sample, g} x 100

pH Value, VFA, NH₂, and Methane Production

The process of measuring pH, VFA, and NH₃ followed the same procedure as that for nutrient digestibility, but the fermentation stopped at the 4-hour mark. After centrifuging the fermenter tube at 3,000 rpm for 15 minutes, the supernatant was taken to measure the rumen pH, NH₃, and total and partial VFA concentrations. A digital pH meter from the brand "ACT" was used to measure the rumen liquid pH, and each sample was tested three times. NH3 levels were determined using a spectrophotometer, employing a spectrophotometric method based on the catalyzed endophenol reaction to form a stable blue compound (Chaney & Marbach, 1962). Cottyn & Boucque (1968) reported that gas chromatography was used to quantify the generation of partial VFAs (acetic acid, propionate, and butyrate). A milliliter of 95%-97% H₂SO₄ was combined with a 10 mL incubation sample. A milliliter of the sample combination was mixed with 0.0003 g of dehydrated sulfosalicylate. After that, the mixture was centrifuged for 10 minutes at 7 °C at 12,000 rpm. The samples were ready for gas chromatography identification.

The methane gas concentration and energy conversion efficiency were determined by calculating the VFA stoichiometry, which was the estimation using the formula of Orskov & Ryle (1990). The formula used for methane concentration was Methane (mM)= 0.5a - 0.25p + 0.5b, where a, p, and b are moles of acetic, propionic, and butyric acids, respectively. The efficiency of conversion of hexose energy to VFA was calculated based on the stoichiometry of the carbohydrate fermentation reaction from hexose to VFA (acetate, propionate, and butyrate). The calculation formula used was:

E (%)= [(0.622 pA + 1.091 pP + 1.558 pB) / (pA + pP + 2pB)] x 100

Where E is energy, and pA, pP, and pB are the proportions of acetic, propionic, and butyric acids.

Protozoa, Microbial Protein, and Fatty Acids Rumen Liquid

To calculate protozoa, microbial protein and fatty acid concentrations in the rumen liquid, the fermentation process was carried out for 24 hours. The populations of protozoa were calculated following the procedures of Ogimoto & Imai (1981). The solution used was trypan blue formalin saline (TBFS), made from a mixture of 100 mL 35% formaldehyde, 2 g trypan blue, 8 g NaCl, and 900 mL distilled water. The protozoa population was carried out on each treatment rumen fluid mixed with Trypan Blue Formalin Saline (TBFS) solution with a ratio of 5:1. The counting chamber with a thickness of 0.1 mm was dripped with 2 drops of the mixture. The area of the smallest box was 0.0625 mm, totaling 16 boxes with a box area of 5 boxes read. The number of protozoa was calculated by using a microscope at magnification 100 times. The formula used for total population of protozoa was: [1 / (0.1 x 0.0625 x 16 x 5)] x 1000 x DF x C, where C is protozoa population in the counting chamber and DF is diluent factor the specimen.

Measurement of rumen liquid protein microbes using the method of Makkar et al. (1982) on the principle of gradual centrifugation. The fatty acid profile of rumen liquid was analyzed using a gas chromatograph (Model GC-14A, Shimadzu Corporation, Kyoto, Japan). Samples were stored at -20 °C until analysis. Following the method of Cocks & Rede (1966), the fatty acid composition was determined by converting oil to fatty acid methyl esters. This involved adding 950 µL of n-hexane, 50 mg of oil, and 50 µL of sodium methoxide. The peaks of the fatty acid methyl esters were identified by comparing their retention times with those of authentic standards. The relative percentage of each fatty acid was calculated based on its peak area relative to the total peak area of all fatty acids in the sample. Fatty acids were categorized into short-chain fatty acids (SCFA) as having fewer than six carbon atoms, medium chain fatty acids (MCFA) ranging from C6 to C12, and long-chain fatty acids (LCFA), which are greater than C12 (Wang et al., 2020).

Statistical Analysis

The data were analyzed using a completely randomized design in SPSS 16. Duncan's Multiple Range Test with significance was set at p<0.05 to compare treatments when a significant effect was observed.

RESULTS

Feed Fermentability in The Rumen

Detailed rumen feed fermentation parameters can be seen in Table 2. The pH levels in all treatments were not significantly different and were in the normal range of 6.75-6.82. Supplementation of 5% PO (T1) had an effect on reducing the number of protozoa and microbial proteins compared to the control and other treatments (p<0.05). On the other hand, 5% partial ZPOS (T2) and 5% ZPOS (T3) supplementation caused a decrease in NH3 concentration and an increase in VFA production compared to the control and 5% PO supplementation (p<0.05).

Nutrient Digestibility

Table 3 presents the nutrient digestibility due to 5% PO, 5% partial ZPOS, and 5% ZPOS supplementation. All treatments did not show significant differences in dry matter (DMD), organic matter (OMD), and crude protein (CPD) digestibility, but there were significant differences (p<0.05) in ether extract digestibility (EED), crude fiber digestibility (NDFD), neutral detergent fiber digestibility (NDFD), and acid detergent fiber digestibility (ADFD). Both supplementation of 5% PO (T1), 5% partial ZPOS (T2), and 5% ZPOS (T3) increased EED, but fiber digestibility (CFD, NDFD, and ADFD) was only increased by 5% partial ZPOS supplementation (T2), while 5% PO and 5% ZPOS supplementation did not differ from the control.

Relative Proportion of VFA

Table 4 shows the partial VFA and methane production in rumen liquid. Supplementation of 5% PO, 5% partial ZPOS, and 5% ZPOS) significantly influenced (p<0.05) acetate, propionate, butyrate, the A/P ratio, and methane but did not impact the efficiency of hexose energy conversion into VFA. The relative proportion of VFAs in this study was 59%–62% acetic acid, 24%–29% propionic acid, and 12%–13% butyric acid. Both 5% partial ZPOS (T2) and 5% ZPOS supplementation increased acetate, propionate, and butyrate compared to 5% PO supplementation (T1) and the control (T0). Conversely, A/P ratio and methane production decreased with 5% PO and 5% partial ZPOS supplementation. The efficiency of hexose energy conversion into VFA between treatments was not significantly different.

Table 2. In vitro feed fermentability in rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Variables –		Treat	SEM			
	TO	T1	T2	T3	SEIM	p-Value
pH	6.76	6.75	6.73	6.82	0.018	0.224
Protozoa (10 ³ cell/mL)	98.14ª	32.57°	82.83 ^{ab}	69.31 ^b	0.044	0.000
Microbial protein (mg/mL)	13.01ª	9.37 ^b	13.37ª	11.41^{ab}	0.469	0.002
NH ³ (mM)	14.06 ^a	14.45 ^a	9.64 ^b	10.36 ^b	0.543	0.000
VFA (mM)	87.52 ^b	101.78 ^b	164.38ª	157.89ª	8.134	0.000

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Variables -		Treatr	SEM	\$7.1		
	Т0	T1	T2	T3	SEIVI	p-Value
Dry matter (%)	64.06	63.82	67.20	69.24	0.85	0.054
Organic matter (%)	69.16	65.89	69.65	69.98	0.632	0.068
Crude protein (%)	68.69	67.99	66.39	65.11	0.569	0.100
Ether extract (%)	88.45 ^b	94.34ª	93.22ª	92.35ª	0.587	0.000
Crude fiber (%)	54.46 ^b	51.46 ^b	73.63ª	66.11 ^{ab}	3.057	0.020
Neutral detergent fiber (%)	56.20 ^b	46.33 ^b	70.03ª	64.62 ^{ab}	2.830	0.006
Acid detergent fiber (%)	45.12 ^b	44.56 ^b	65.81ª	53.76 ^{ab}	2.704	0.006

Table 3. In vitro nutrient digestibility in rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Table 4. In vitro VFA and methane production in rumen liquid with supplementation of zinc palm oil soap (ZPOS)

Variables –		Treat	ments		SEM	va Value
variables	T0	T1	T2	Т3	SEIVI	p-Value
Acetate (mM)	41.17 ^b	51.10 ^a	59.31ª	65.80ª	2.579	0.000
Propionate (mM)	15.91°	25.41 ^b	28.73ª	29.89ª	1.348	0.000
Butyrate (mM)	8.73 ^b	10.28 ^b	12.55ª	14.20 ^a	0.546	0.000
A/P	2.59ª	2.01 ^b	2.06 ^b	2.20 ^b	0.061	0.000
Methan (mM)	31.87 ^a	28.04 ^b	28.58 ^b	29.57 ^{ab}	0.489	0.014
Efficiency of energy conversion (%)	73.05	73.19	74.74	74.47	0.357	0.226

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Fatty Acids in Rumen Liquid

Table 5 outlines the fatty acid composition in rumen liquid. Supplementation of 5% PO (T1), 5% partial ZPOS (T2), and 5% ZPOS (T3) supplementation decreased significantly (p<0.05) short-chain fatty acids (SCFA). The long chain fatty acids (LCFA), especially palmitate (C16:0), increased, but stearate (C18:0) decreased by all treatments (p<0.05). Unsaturated fatty acids (USFA), particularly trans 11 C18:1, cis 9 C18:1, C18:2, C20:5 (EPA), and C22:6 (DHA), increased by 5% partial ZPOS (T2) and 5% ZPOS (T3) supplementation.

These fatty acids are classified into various categories, including short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs), saturated fatty acids (SFAs), unsaturated fatty acids (USFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). According to Table 6, the diets supplemented with 5% PO, 5% partial ZPOS, and 5% ZPOS decreased SCFAs compared to the control diet (p<0.05) but increased LCFA. SFAs showed an increase in control and 5% PO supplementation demonstrated an ability to elevate USFAs. Notably, the 5% partial 5% ZPOS and 5% ZPOS supplementation increased MUFAs and PUFAs than the other treatments.

DISCUSSION

Feed Fermentability

The pH is one of the crucial factors in assessing rumen health. The findings indicated that adding palm oil and protected palm oil Zn soap did not disrupt the rumen fermentation process. Palm oil contains high palmitic acid, which actually supports the growth of rumen bacteria (Sears *et al.*, 2024). Apart from being high in palmitate content, palm oil is also high in unsaturated fatty acids (oleic acids), palm oil protection causes unsaturated fatty acids to escape rumen microbial biohydrogenation so that negative effects on the rumen environment can be eliminated. Similar results have been reported in other studies, such as those conducted by Adeyemi *et al.* (2015), Amanullah *et al.* (2022), and Roy *et al.* (2017).

The reduction in protozoa is attributed to the high content of saturated fatty acids in palm oil, particularly palmitic acids (C16:0). According to Rahman *et al.* (2022), palm oil contains about 44% palmitic acid. It has been reported that supplementation of LCFA in the form of palmitate (C16:0) and stearate (C18:0) resulted in a decrease in the protozoa population, although the effect of the decrease was not as strong as MCFA, especially capric acids (C10:0) and lauric acid (C12:0). (Matsumoto *et al.*, 1991). The decrease is caused by the inability of protozoa to digest fat because they do not have lipolytic enzymes; as a result, the addition of oil can interfere with the metabolic activity of protozoa and subsequently cause the number of protozoa to decrease (Hartanto *et al.*, 2017).

Ibrahim *et al.* (2021) discovered that supplementing with palm oil altered the rumen microbial population in ruminants, potentially affecting their overall protein synthesis capability. Sears *et al.* (2024) reported that oleic acid significantly reduces Fibrobacteraceae. The study further indicated that high levels of unsaturated fatty acids could adversely affect cellulolytic bacteria, which are crucial for fiber digestion, resulting in decreased

Table 5. In vitro proportion of fatty acids in rume	en liquid with supplement	ation of zinc palm oil so	ap (ZPOS) (% fat)
---	---------------------------	---------------------------	-------------------

Fatty acids			ments		- SEM	p-Value
Fatty actus	Т0	T1	T2	Т3	JEIVI	p-value
Short-chain fatty acids (SCFA)						
C4	7.34 ^a	5.34 ^b	5.27 ^b	2.36 ^c	0.435	0.000
Medium chain fatty acids (SCFA)						
C6	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C8, caprylic	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C10, capric	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C12, lauric	1.38	1.15	1.22	1.20	0.044	0.299
Long-chain fatty acids (LCFA)						
C13	0.3ª	0.17^{a}	<0.1 ^b	<0.1 ^b	0.030	0.000
C14, myristic	2.19	1.85	2.30	1.68	0.063	0.054
C14:1	1.00	0.50	0.57	0.44	0.072	0.053
C15,	0.51	0.75	0.36	0.33	0.056	0.055
C15:1	0.34	0.23	0.16	0.21	0.025	0.051
C16, palmitic	22.03ь	29.34ª	29.23 ^a	31.14ª	0.854	0.000
C16:1, n7	1.12 ^b	1.04 ^b	1.36 ab	1.5^{a}	0.058	0.005
C17	0.39	0.23	0.23	0.28	0.025	0.052
C17:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18, stearic	40.13 ^a	30.74 ^b	23.17 ^b	21.5 ^b	2.198	0.002
trans 11 C18:1	12.55°	17.84 ^b	26.16 ^a	28.05 ^a	1.476	0.834
cis 9 C18:1, oleic	1.09 ^b	1.43 ^b	1.99ª	1.83ª	0.099	0.000
C18:2	1.04 ^c	1.31 ^{bc}	1.6^{ab}	1.86ª	0.084	0.000
C18:3	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C18:3, omega 6	0.22 ^b	0.26 ^b	0.45 ^a	0.53ª	0.032	0.000
C18:3, gamma linolenic	0.79ª	<0.1 ^c	0.38 ^b	0.41 ^b	0.064	0.000
C20	1.31	0.83	0.64	0.67	0.050	0.058
cis 11 C20:1	0.16 ^b	0.59 ^a	0.31 ^b	0.23 ^b	0.041	0.000
cis 11-14 C20:2	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C20:3	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C20:4, arachidonic	0.48^{a}	<0.1 ^b	<0.1 ^b	<0.1 ^b	0.048	0.000
C20:5, EPA	0.07°	0.55 ^b	0.59 ^b	0.76 ^{ab}	0.069	0.000
C21	1.38	0.31	0.20	0.26	0.017	0.000
C22, behenic	0.94ª	0.43 ^{ab}	0.23 ^b	0.25 ^b	0.042	0.050
C22:1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C22:6, DHA	3.19 ^b	4.81ª	4.57ª	4.42 ^a	0.159	0.000
C24	< 0.1	< 0.1	< 0.1	< 0.1	-	-
C24:1, nervonic omega 9	< 0.1	< 0.1	< 0.1	< 0.1	-	-

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

Table 6. *In vitro* proportion of short-chain, long-chain, saturated, and unsaturated fatty acids in rumen liquid with supplementation of zinc palm oil soap (ZPOS) (% fat)

Eatter a side		Treat	ments		- SEM	a Value
Fatty acids	TO	T0 T1 T2 T3		SEIVI	p-Value	
SCFA	7.34ª	5.34 ^b	5.27 ^b	2.36°	0.453	0.000
MCFA	1.38ª	1.15 ^b	1.22 ^b	1.20 ^b	0.028	0.009
LCFA	91.23°	93.41 ^b	93.50 ^b	96.35ª	0.443	0.000
SFA	77.9ª	71.14 ^b	61.85°	59.67°	1.766	0.000
USFA	22.05°	28.76 ^b	38.14ª	40.24ª	1.722	0.000
MUFA	16.26 ^c	21.63 ^b	30.55ª	32.26ª	1.531	0.000
PUFA	5.79°	7.13 ^b	7.59ª	7.98ª	0.201	0.000

Note: ^{a,b} Means in the same row with different superscripts differ significantly (p<0.05). SCFA= short-chain fatty acids, MCFA= medium-chain fatty acids, LCFA= long-chain fatty acids, SFA= saturated fatty acids, USFA= unsaturated fatty acids, MUFA= monounsaturated fatty acids, PUFA= polyunsaturated fatty acids. T0= basal diet without supplementation; T1= basal diet + 5% palm oil (PO); T2= basal diet + partial ZPOS (3.75% ZPOS + 1.25% PO); T3= basal diet + 5% ZPOS.

protein synthesis. The use of ZPOS protection, both 5% partial ZPOS (T2) and 5% ZPOS (T3) can mitigate the harmful effects of unsaturated fatty acids, enabling microbes to develop as effectively as in the control group.

Yanza *et al.* (2021) found that ruminants given protected medium chain fatty acids (MCFA) experienced a decrease in total VFA production compared to those given unprotected oil. Similarly, T2 and T3 treatments resulted in high VFA levels due to the increased propionate production. Propionate is formed from the breakdown of glycerol during fat hydrolysis. The NH₃ concentration in the T2 treatment was the lowest among all treatments, while microbial protein production was the highest. This indicates that NH₃ is utilized for microbial protein synthesis (Getabalew & Negash, 2020).

Nutrient Digestibility

The digestibility values for DMD, OMD, CPD, NDFD, and ADFD were unaffected by 5% PO supplementation, indicating that this level of supplementation is safe for rumen microbial growth. These results are consistent with previous research, which found that 6% supplementation with vegetable oils (olive oil, sunflower oil, and linseed oil) yielded OMD, NDFD, and ADFD values comparable to the control, although linseed oil resulted in higher digestibility than sunflower oil (Vargas-bello-p et al., 2020). The effect of oil supplementation on digestibility is highly dependent on the nutrient composition of the feed and the fatty acid profile of the oil. The experimental feed in this study, characterized by high fiber content and low ADF (13.77%), supports the proliferation of cellulolytic microbes. A high-fiber diet may mitigate the potential negative impact of oil on fiber digestion by rumen microbes (Benchaar et al., 2015). Both non-protected (T1) and protected (T2 and T3) palm oil increased EED, supporting the conclusion that palm oil can be used as an energy supplement without compromising rumen feed fermentability.

A notable finding from this research is that both partial and total Zn soap supplementation with palm oil (T2 and T3) significantly enhances CFD, NDFD, and ADFD. This effect is likely due to the fat and Zn content in palm oil. Palm oil contains high levels of palmitic acid (39.8%) and oleic acid (46.14%) (Koushki *et al.*, 2015). Research by Sears *et al.* (2024) indicates an increase in Prevotella and Fibrobacter populations in response to palmitic acid supplementation. This suggests that cellulolytic bacteria can incorporate palmitic acid into their cell membranes, thereby increasing energy availability for metabolic processes. Furthermore, Zn is crucial for various metabolic functions in rumen microbes.

Zinc (Zn) plays a pivotal role in numerous biological processes, encompassing enzyme activity, cell membrane stability, gene expression, and cell signaling (Swain *et al.*, 2016; Uniyal *et al.*, 2017). It is indispensable for preserving the structural and functional integrity of over 2000 transcription factors and 300 enzymes. It can

be contended that virtually all metabolic pathways are reliant, to varying degrees, on at least one Zn-dependent protein (Ranasinghe *et al.*, 2015). Recent research by Fellner *et al.* (2021) elucidated that Zn supplementation precipitated increased acetate production and a heightened acetate/propionate ratio. This delineates an augmented fiber digestion process facilitated by cellulolytic bacteria, consequent to heightened microbial protein synthesis. This conclusion aligns with findings indicating elevated levels of microbial protein compared to PO supplementation (T1), specifically 13.37 (T2) and 11.41 (T3) versus 9.37 mg/mL in the T1 treatment (Table 3).

Relative Proportion of VFA

The relative proportion of acetate observed is slightly lower than that reported by Anzhany et al. (2024), which ranged from 69% to 72%, while the proportions of propionate and butyrate are comparatively higher. According to Amanullah et al. (2022), palm oil supplementation modifies the rumen environment, thereby altering the ratio of cellulolytic to amylolytic microbes. Both 5% partial ZPOS and 5% ZPOS supplementation resulted in significantly higher acetate production compared to non-protected palm oil (p<0.05). Acetate is the yield of digestion of fibrous carbohydrates by cellulolytic bacteria, which means that the increase in acetate is in line with the increase in the number of cellulolytic bacteria in the rumen. This is likely related to the decreasing protozoa population resulting from oil supplementation. Protozoa are predators of bacteria (Dayyani et al., 2013), so a decrease in the number of protozoa will increase the number of bacteria because it reduces competition for nutrients. These findings are consistent with the increased microbial protein levels observed with 5% partial ZPOS and 5% ZPOS supplementation, suggesting enhanced bacterial growth. Zinc (Zn) is an essential trace mineral cofactor for over 300 enzymes, including DNA and RNA polymerase, which play a role in protein synthesis (Franco et al., 2024; Sloup et al., 2017).

The increase in propionate in the ZPOS supplementation treatment resulted from the hydrolysis of fat into fatty acids and glycerol, with glycerol subsequently converted into propionate. Protozoa in the rumen contribute significantly to the flow of unsaturated fatty acids leaving the rumen, potentially protecting chloroplast unsaturated fatty acids from rumen bio-hydrogenation and increasing the duodenal flows of mono and polyunsaturated fatty acids (Newbold et al., 2015). These findings are consistent with studies showing that ZPOS supplementation leads to an increase in protozoan populations (Table 4). Zn supplementation has been associated with shifts in rumen volatile fatty acid profiles, notably an increase in propionate and a reduction in the acetate-to-propionate ratio (Hilal et al., 2016). Moreover, the lack of an increase in methane production and a lower A/P ratio is advantageous, as higher propionate levels provide a carbon framework and synthetic energy for livestock.

Fatty Acids in Rumen Liquid

Previous research showed that oil supplementation caused a decrease in the proportion of short-chain fatty acids in rumen fluid while increasing the presence of long-chain fatty acids. Mancini et al. (2015) argue that this transition is caused by the large number of longchain fatty acids (LSFA) in palm oil, namely 98.3%, and the remaining 1.7% consists of short-chain fatty acids (SCFA). Among long-chain fatty acids, which account for 98.3% of the total, almost half (49.9%) are unsaturated fatty acids (USFA), consisting of 39.2% monounsaturated fatty acids (MUFA) and 10.5% polyunsaturated fatty acids (PUFA). The prevalence of saturated fatty acids (SFA) in palm oil contributes to the range of rumen saturated fatty acid levels, where PO supplementation treatment (T1) has higher SFA levels compared to ZPOS supplementation, namely T1 71.14%, T2 61.85%, and T3 59.67% (Table 6).

Palm oil contains MUFA in the form of oleic acid (18:0) in large quantities, namely 39.2%. In the rumen, feed fat will undergo lipolysis to produce fatty acids and glycerol. Unsaturated fatty acids, including oleic acid (18:1), undergo a biohydrogenation process, being converted into saturated fatty acids, stearic acid (18:0), in the rumen by bacteria (Buccioni et al., 2012). Harvatine et al. (2009), who tracked the biohydrogenation process of oleic acid, found that oleate in the rumen can change into trans and cis forms because rumen microbes produce cis/trans isomerase enzymes, and there is an isomerase that changes the 18:2 and 18:3 cis bonds (linoleate and linolenate) to trans 18:1. The dominant biohydrogenation process that occurs in the rumen is bacteria hydrogenate polyunsaturated fatty acids (PUFA) into trans-11 18:1 and cis-9, trans-11 fatty acids, then trans 18:1 fatty acids into stearic acid (18:0).

Consistent with our study's findings, supplementation with ZPOS (T2 and T3) resulted in elevated levels of trans18:1 and cis 18:1, alongside reduced stearate (18:0) concentrations compared to non-protected oil supplementation (T1). Amanullah et al. (2022) conducted a comparative analysis involving corn oil, linseed oil, and Ca salt (protected C18:2n-6), revealing that protected fatty acids (Ca Salt) led to diminished stearate levels but higher proportions of MUFA and PUFA. These findings are consistent with the research by Satir et al. (2023), which demonstrated that 3% protected palm oil supplementation can increase the content of palmitic acid (SFA) and oleic acid (MUFA). Stearate is the final product of the biohydrogenation of oleic, linoleic, and linolenic acids. This indicates a complete inhibition of the biohydrogenation process in the ZPOS treatment. The protection of polyunsaturated fatty acids through saponification involves bonding the carboxyl group with Zn, resulting in the inhibition of isomerization, which is a prerequisite for the hydrogenation of unsaturated fatty acids into saturated fatty acids. This is reflected in the higher proportion of MUFA in the ZPOS treatment compared to PO and the control (Table 6). The substantial presence of PUFA, notably EPA and DHA, underscores Zn's role in the elongation and desaturation process, facilitated

by the formation of arachidonic acid (20:4) through delta-6-desaturase (D6D) and delta-5-desaturase (D5D) enzymes (Ridgway, 2016). Zn's indispensability is further highlighted as a pivotal mineral cofactor for D6D and D5D enzymes (Noland & Drisko, 2020).

Trans 18:1 acts as a precursor for saturated fatty acid formation in the rumen, particularly stearate, while on a tissue level, it serves as a precursor for conjugated linoleic acids (CLA), known for their antioxidant and anticarcinogenic properties in livestock products. Hence, the augmentation of trans 18:1 fatty acids attributed to ZPOS supplementation holds the potential for enhancing the quality of meat and milk fat.

CONCLUSION

Based on the results of this research, it can be concluded that zinc soap from palm oil (ZPOS) can be developed as a source of energy and organic Zn. Supplementation of 5% partial ZPOS (3.75% ZPOS + 1.25% PO) is better than 5% ZPOS. The beneficial effects of this supplementation are increased fiber digestibility, VFA, LCFA, and USFA, as well as decreased methane production in the rumen. Further investigation is required to test the ZPOS on dairy cows *in vivo*.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest with any financial, personal, or other relationships with other people or organizations related to the material discussed in the manuscript.

ACKNOWLEDGEMENT

The research was funded by the Faculty of Animal and Agricultural Science, Diponegoro University in 2023, with contract number 4/UN7.F5/HK/III/2023.

REFERENCES

- Adeyemi, K. D., M. Ebrahimi, A. A. Samsudin, A. R. Alimon, R. Karim, S. A. Karsani, & A. Q. Sazili. 2015. Influence of carotino oil on *in vitro* rumen fermentation, metabolism and apparent biohydrogenation of fatty acids. Anim. Sci. J. 86:270–278. https://doi.org/10.1111/asj.12279
- Amanullah, S. M., S. Lee, D. Hand, Vi. Paradhipta, Y. Joo, D. Kim, P. Seong, S. Jeong, & S. Kim. 2022. Impact of oil sources on *in vitro* fermentation, microbes, greenhouse gas, and fatty acid profile in the rumen. Fermentation 8:242. https://doi.org/10.3390/fermentation8050242
- Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid biohydrogenation, fermentation, and digestibility of ration containing napier and king grass with different harvest ages and altitudes: *In vitro* study. Trop. Anim. Sci. J. 47:68–78. https://doi.org/10.5398/tasj.2024.47.1.68
- **AOAC.** 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical Chemists, Washington, DC.
- Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, n balance, and milk production. J. Dairy Sci. 98:7993–8008. https://doi.org/10.3168/jds.2015-9398

- Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 174:1–25. https://doi.org/10.1016/j.anifeedsci.2012.02.009
- **Cabatit, B. C.** 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press, Manila.
- Chaney, A. L. & E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130– 132. https://doi.org/10.1093/clinchem/8.2.130
- Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of zinc-bearing palygorskite on rumen fermentation *in vitro*. Asian-Australas. J. Anim. Sci. 32:63–71. https://doi. org/10.5713/ajas.17.0920
- Cocks, L. V. & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis. Academic Press, London.
- Cottyn, B. G. & C. V. Boucque. 1968. Rapid method for the gaschromatographic determination of volatile fatty acids in rumen fluid. J. Agric. Food Chem. 16:105–107. https://doi. org/10.1021/jf60155a002
- Duffy, R., M. Yin, & L. E. Redding. 2023. A review of the impact of dietary zinc on livestock health. J. Trace Elem. Miner. 5:100085. https://doi.org/10.1016/j.jtemin.2023.100085
- Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The effect of total or partial protected vegetable oil supplementation on *in vitro* digestibility, feed fermentability and energy efficiency. Buletin Peternakan 43:171–178. https://doi. org/10.21059/buletinpeternak.v43i3.43231
- Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of supplemental zinc on ruminal fermentation in continuous cultures. Appl. Anim. Sci. 37:27–32. https://doi. org/10.15232/aas.2020-02104
- Franco, C. E., E. L. Rients, F. E. Diaz, S. L. Hansen, & J. L. McGill. 2024. Dietary zinc supplementation in steers modulates labile zinc concentration and zinc transporter gene expression in circulating immune cells. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-024-04123-6
- Gao, J., M. Wang, Y. Jing, X. Sun, T. Wu, & L. Shi. 2016. Impacts of the unsaturation degree of long-chain fatty acids on the volatile fatty acid profiles of rumen microbial fermentation in goats *in vitro*. J. Integr. Agric. 15:2827–2833. https://doi. org/10.1016/S2095-3119(16)61418-1
- Getabalew, M. & A. Negash. 2020. Nitrogen metabolism and recycling in ruminant animals : A review college of agricultural and natural resources science. Academic J. Nutr. 9:29–38.
- Harvatine, K. J., Y. R. Boisclair, & D. E. Bauman. 2009. Recent advances in the regulation of milk fat synthesis. Animal 3:40–54. https://doi.org/10.1017/S1751731108003133
- Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The role of zinc, manganse and copper in rumen metabolism and immune function: A review article. Open J. Anim. Sci. 6:304–324. https://doi.org/10.4236/ojas.2016.64035
- Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, S. C. L. Candyrine, W. N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: A review. Trop. Anim. Health Prod. 53:422. https://doi.org/10.1007/s11250-021-02863-4
- Khaskheli, A. A. & L. Chou. 2020. Evaluation of fatty acids composition, metabolizable energy, nutrients digestibility of crude palm oil fat crystals in Turkeys. Anim. Feed Sci. Technol. 270:114734. https://doi.org/10.1016/j. anifeedsci.2020.114734
- Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of sunflower oil supplementation as unsaturated fatty acid source on rumen fermentability and performance of lactating Garut ewes. J. Indones. Trop. Anim. Agric. 42:185–193. https://doi.org/10.14710/ jitaa.42.3.185-193

- Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physicochemical properties, fatty acid profile and nutrition in palm oil. J. Paramed. Sci. 6:117–134.
- Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170–2173. https://doi.org/10.3168/ jds.S0022-0302(82)82477-6
- Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono. 2015. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules 20:17339–17361. https://doi.org/10.3390/ molecules200917339
- Martínez, A. & D. C. Church. 1970. Effect of various mineral rumen cellulose elements. J. Anim. Sci. 31:982–990. https:// doi.org/10.2527/jas1970.315982x
- Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of different vegetable oils on *in vitro* ruminal fermentability and nutrient digestibility in ettawah crossbred goat. Anim. Prod. 21:22–29. https://doi.org/10.20884/1.jap.2019.21.1.689
- Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan. 2015. The role of ciliate protozoa in the rumen. Fron. Microbiol. 6:1313. https://doi. org/10.3389/fmicb.2015.01313
- Noland, D. & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition Therapy. In: L. Wagner (Eds). Humana Press, Switzerland. https://doi. org/10.1007/978-3-030-30730-1
- **Ogimoto, K. & S. Imai.** 1981. Atlas of Rumen Microbiology. Japan Scientific Societies Press, Tokyo.
- Oliveira, A. S. 2015. Meta-analysis of feeding trials to estimate energy requirements of dairy cows under tropical condition. Anim. Feed Sci. Technol. 210:94–103. https://doi. org/10.1016/j.anifeedsci.2015.10.006
- **Orskov, E. R. & M. Ryle.** 1990. Energy Nutrition in Ruminants. Elsevier Applied Science, London (UK).
- Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui J. B. Bessa, & L. Lopes-dacosta. 2022. Effects of feeding rumen-protected linseed fat to postpartum dairy cows on plasma n-3 polyunsaturated fatty acid concentrations and metabolic and reproductive parameters. J. Dairy Sci. 105:361–374. https://doi. org/10.3168/jds.2021-20674
- Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The composition of fatty acids in several vegetable oils from Indonesia. Biodiversitas 23:2167–2176. https://doi. org/10.13057/biodiv/d230452
- Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P. Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr. Metab. 12:26. https://doi.org/10.1186/s12986-015-0023-4
- Ranaweera, K. K. T. N., M. B. P. K. Mahipala, & W. M. P. B. Weerasinghe. 2020. Evaluation of energy balance in tropical and temperate crossbred dairy cows at postpartum transition stage: A case study. Trop. Agric. Res. 31:12-20. https://doi.org/10.4038/tar.v31i2.8363
- Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. In R.S. McLeod (Eds). Elsevier, Netherland.
- Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration *in vitro*. Vet. World 10:11–16. https://doi.org/10.14202/vetworld.2017.11-16
- Santos, F. A., G. S. Cruz, F. A. Vieira, B. R. S. Queiroz, C. D. T. Freitas, F. P. Mesquita, & P. F. N. Souza. 2022. Systematic review of antiprotozoal potential of antimicrobial peptides. Acta Trop. 236:106675. https://doi.org/10.1016/j. actatropica.2022.106675
- Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of adding rumen - protected palm oil in diet on milk fatty

acid profile and lipid health indices in Kivircik ewes. Trop. Anim. Health Prod. 55:159. https://doi.org/10.1007/ s11250-023-03580-w

- Sears, A., F. Hentz, J. de Souza, B. Wenner, Robert E. Ward, & F. Batistel. 2024. Supply of palmitic, stearic, and oleic acid changes rumen fiber digestibility and microbial composition. J. Dairy Sci. 107:902–916. https://doi. org/10.3168/jds.2023-23568
- Shingfield, K. J. & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in Ruminants and Humans. In: B. Sels and A. Philippaerts (Eds). Conjugated Linoleic Acids and Conjugated Vegetable Oils. The Royal Society of Chemistry. https://doi.org/10.1039/9781782620211-00001
- Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in the animal organism: A review. Sci. Agric. Bohem. 48:13–21. https://doi.org/10.1515/ sab-2017-0003
- Swain, P. S., S. B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2:134–141. https://doi.org/10.1016/j.aninu.2016.06.003
- Tilley, J. M. A. & R. A. Terry. 1963. A two-stage technique for the *in vitro* digestion of forage crops. Grass Forage Sci. 18:104–111. https://doi.org/10.1111/j.1365-2494.1963. tb00335.x
- Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P. Faverdin. 2023. Genetic relationships between weight loss in early lactation and daily milk production throughout lactation in holstein cows. J. Dairy Sci. 106:4799–4812. https://doi.org/10.3168/ jds.2022-22813
- Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017. Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in Guinea pigs. Livest. Sci. 204:59–64. https://doi. org/10.1016/j.livsci.2017.08.009

- Vargas-bello-p, E., L. E. Robles-jimenez, R. Ayala-hern, J. Romero-bernal, N. Pescador-salas, & O. Alonso. 2020. Effects of calcium soaps from palm, canola and safflower oils on dry matter intake, nutrient digestibility, milk production, and milk composition in dairy goats. Animals 10:1728. https://doi.org/10.3390/ani10101728
- Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L. Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of zinc sulfate and coated zinc sulfate on lactation performance, nutrient digestion and rumen fermentation in holstein dairy cows. Livest. Sci. 251:104673. https://doi. org/10.1016/j.livsci.2021.104673
- Wang, S., Y. Wang, F. Shahidi, & C. Ho. 2020. Health Effects of Short-Chain, Medium-Chain, and Long-Chain Fatty Acids, Saturated vs Unsaturated and Omega-6 vs Omega-3 Fatty Acids and Trans Fats. In: F. Shahidi (Ed). Bailey's Industrial Oil and Fat Products: 7th ed. John Wiley & Sons, Ltd. https://doi.org/10.1002/047167849X.bio100
- Wardeh, M. F. 1981. Models for Estimating Energy and Protein Utilization for Feeds: All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 4556. Utah State University, Utah, USA. https://doi.org/10.26076/9026-5aad
- World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group - The World Bank, Washington, USA.
- Wulandari, B. P. Widyobroto, & A. Agus. 2020. In vitro digestibility and ruminal fermentation profile of pangola grass (*Digitaria decumbens*) Supplemented with crude palm oil protected by sodium hydroxide. Livestock Research Rural Development. 32. https://www.lrrd.cipav.org.co/ lrrd32/7/wulan32102.html.
- Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, M. Gao, H. Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The effects of dietary medium-chain fatty acids on ruminal methanogenesis and fermentation *in vitro* and *in vivo*: A meta-analysis. J. Anim. Physiol. Anim. Nutr. 105:874–889. https://doi.org/10.1111/jpn.13367