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1. Introduction 
 

As time progresses, the age of the produced well experiences a decline in pressure over time. There is a point where 
the natural reservoir pressure is no e allonger sufficient to flow and lift reservoir fluids to the surface. The electric submersible 
pump (ESP) is an artificial lift tool widely used in oil and gas wells (Panbarasan et al., 2022). It is estimated that 25% of oil and 
gas wells have been equipped with ESPs (Adesanwo et al., 2016). Compared with other artificial lift systems, the main 
advantage of electrical submersible pumps their high production capacity (Abdelaziz et al., 2017). 

The ESP system consists of several interacting elements and is fundamentally complex. The behavior of the ESP system 
varies significantly due to differences in fluid settings, reservoir conditions, well completion methods, and various types of 
equipment involved (Grasiian et al., 2017). The installation of ESPs can lead to increased production costs. However, there is 
also an expectation of economic benefits from the implementation of the ESP because it can increase or maintain the level of 
oil production. An ESP (electrical submersible pump) is also a tool that can withstand extreme environments that are physically 
inaccessible to operation and maintenance teams. These extreme conditions can increase the likelihood of ESP failure and have 
a negative effect on the lifespan of ESP equipment, as well as a decrease in company revenue (Fang et al., 2021). 

The ESP itself is equipped with downhole monitoring sensors that transmit data, such as motor temperature, pump inlet 
pressure, motor vibration temperature, and motor current, to the surface. These data can be used in the development of key 
failure condition indicators for ESP machines. For example, if the motor temperature increases drastically, the pump will shut 
down automatically. Other indicators may include changes in pressure, current, and other parameters. The data from these 
sensors are collected and managed in a database. However, the database system is designed only to store historical data over 
time and is not designed to analyze data, generate reports, or provide real-time intervention. 

Owing to its use, the ESP machine will gradually experience deterioration in its condition, which can lead to failure. In 
this case, predictive maintenance is a solution that can be used to reduce these failures by monitoring trends in installed sensor 
data to predict failures in ESP machines (Sharma et al., 2022; Silvia and Furlong, 2023; Melo et al., 2023; Bermudez et al., 2021). 
The development of a specifically tailored failure prediction model for ESP machines provides benefits for drilling operations. 
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This is especially true in monitoring and evaluation, as well as in testing prescriptive models that can be used to improve 
decision-making and operational management of ESPs (Lastra and Xiao, 2022). Failure prediction in ESP machines is a crucial 
technical requirement in drilling operations and has the potential to be applied to various oil and gas industry equipment, 
thereby preserving machine life and enhancing oil production (Grasiian et al., 2017). 

Failures of electric submersible pump (ESP) machines are common in the oil industry. On the basis of data from the 
company under study, there were a total of 1860 failures within a period of 2 years. Late problem identification can result in 
the loss of fluid production and potential damage to the ESP system itself. Therefore, there is a need for a system that can 
detect ESP failure issues, read sensor data in real time, and determine the problems corresponding to the sensor data. A similar 
concept was established by Bermudez et al. (2014) and Adesanwo et al. (2016) in implementing artificial intelligence called 
fuzzy logic, which was further refined by Grasiian et al. (2017). In this paper, an improvement is made by applying machine 
learning to analyze the data. Machine learning is designed to create a model that becomes more accurate as more data are 
added. Machine learning can detect problems by building a model that represents the dataset used (Nasteski, 2017). 

On the basis of the issues mentioned above, research has focused on two aspects: predicting failures in ESP machines 
and predicting the remaining operational time before ESP machine failures occur. Through this research, it is hoped that an 
accurate predictive model can be created, leading to more precise maintenance of ESP machines before failures or 
malfunctions occur, thereby minimizing the financial losses incurred by the company. 
 

1.1. Research Objectives 
 

1. Potential issues for each ESP machine failure are identified on the basis of historical well data in the company's 
database via machine learning. 

2. To develop a machine learning model that can predict future failures to assist in decision-making and management 
within the ESP system. 

 

2. Materials and Methods 
 

2.1. Data collection  

 

The data originate from a well within the company's working area, which is equipped with various preinstalled sensors. 
The raw data obtained have different time intervals and need to be prepared before processing. The raw well data obtained 
are from a separate company for each month. Therefore, all the raw data for each month are combined, starting from October 
2020 to August 2022. The total overall dataset consists of 10,089,493 records and has 28 columns, and all the data types are 
still in object format. Furthermore, there are LPO data containing historical damage labels that have been recorded to have 
occurred on the ESP machine within a specified period. The LPO data consists of 28 columns with 1860 recorded damages, 
both planned and unplanned. 

The raw data need to be filtered before processing. The data are filtered by removing unnecessary variables, changing 
the data types as needed, and eliminating missing values in the available data. The goal is to produce more accurate data for 
modeling. In this study, several sensor data columns, including the Motor Ampere, Frequency Motor, Pump Intake Pressure, 
Temperature, OutputVolt, Pump Discharge Pressure, Input Voltage, and Motor Horse Power (HP), which can be seen in  Figure 
1 and  Figure 2, are utilized as indicators for the ESP machine. For label data, unplanned types of damage or those occurring 
suddenly are used. Therefore, it is necessary to remove some columns that are not used to facilitate data processing. 

The failure modes used in this study can be seen in Table 1, which include normal, mechanical, electrical, control and 
system failure modes, and thermal failure modes. These types of failures are the output results of the machine learning 
prediction. 

 

2.2. Exploratory Data Analysis 
 

Data exploration aims to analyze the data patterns that occur during failures. For each failure, an analysis is conducted 
on the patterns formed in the data, and the results are recorded. The same method of exploratory data analysis techniques 
was also applied by Bermudez et al. (Bermudez et al., 2014) and Adesanwo et al. (Adesanwo et al., 2016). Before the modeling 
stage, a classification of failures is conducted to categorize the different types of failures present in the data. Table 2 below 
explains the EDA results that occur on the sensor every time a failure occurs. C indicates that the data are constant. 

 

2.3. Data Transformation 
 

Data transformation is one of the fundamental steps in data preprocessing. When studying feature scaling techniques, 
we often encounter terms such as scaling, standardization, and normalization. The most commonly used technique in feature 
scaling is normalization. In machine learning and data mining, this process helps transform the values of numeric columns in a 
dataset to have a consistent scale. Normalization is frequently applied to data with different ranges or scales. There are several 
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commonly used normalization methods, such as min–max normalization, z score normalization, and minimal scaling 
normalization (Singh et al., 2015). 

 

Standardization 
 

𝑥𝑠𝑡𝑎𝑛𝑑 =  
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑥)
  (1) 

 

Normalization 
 

𝑥𝑠𝑡𝑎𝑛𝑑 =  
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥 (𝑥)−min (𝑥)
  (2) 

 

Table 1 Failure mode. 

Code Failure Mode Category 

0 Normal Normal 
1 Overload Mechanical Failures 

Underload 
MDHP 

Breaker Trip 
Current Unbalance 

Low Supply 
High Supply 

2 EDHP Electrical Failures 
Overcurrent 

High Frequency 
High Volt 

Low Voltage 
Undervolt 

3 Problem VSD Control and System Failures 
Problem Panel 

Unicom Controller Blank 
UDMIN 

ARK LOOK 
Problem PCB Card 

Problem PMSN 
4 Motor High Temp Thermal Failures 

 

 
Figure 1 Data distribution. 

https://www.malque.pub
https://www.malque.pub/ojs/index.php/msj
https://doi.org/10.31893/jabb.21001


 
4 

 

  

 

Saptadi et al. (2025) 

https://www.malque.pub/ojs/index.php/msj 

 

 

 

Figure 2 Data monitoring. 
 

Table 2 Exploratory Data Analysis. 

 Motor 
Ampere 

Frequency Pump 
Intake 

Pressure 

Temperature 
Motor 

Output 
Volt 

Pump 
Discharge 
Pressure 

Input 
Voltage 

Motor 
Horse 
Power 

Mechanical Failures - - + + - - - - 
Electrical Failures + - + + - - + - 
Control and System Failures - - C - C - C + 
Thermal Failures - - + + - + C - 

 

In this study, the raw data need to be filtered before processing. The data are filtered by removing unnecessary variables, 
changing the data types as needed, and eliminating missing values in the available data. The goal is to produce more accurate 
data for modeling. The data are then divided on the basis of the available well types to facilitate data analysis and simplify data 
labeling. Feature scaling is then performed to normalize the data so that the data ranges are not too distant from each other, 
which was also done by Grassian et al. (Grasiian et al., 2017). Figure 3 shows the data before transformation with normalization, 
while Figure 4 shows the data after normalization. 

 

 
Figure 3 Data transformation before scaling. 

 

 
Figure 4 Data transformation after scaling. 

 

2.4. Data processing and synthesis 
 

The data processing process begins by labeling each well on the basis of the guidelines provided by the company. Then, 
outlier detection is carried out with the aim of removing data that lie outside the outlier. Data that are outside the outlier but 
detected as normal are eliminated. The goal is to improve accuracy during modeling. Before entering the modeling phase, the 
available raw data are consolidated into a dataset used for modeling. The next step is to categorize the types of faults into nine 
categories on the basis of the company's labeling guidelines. The obtained fault types include mechanical failures, electrical 
failures, control and system failures, and thermal failures. This is done to classify the existing faults for use in machine learning 
modeling. The prepared data then proceed to the modeling stage. 
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Owing to data imbalance, oversampling is needed. In this research, the oversampling method used was SMOTE. 
The same method was also used by Zhen et al. (Zhen et al., 2023), who utilized SMOTE to overcome data imbalance. By 

using SMOTE, the minority class with fewer recorded data can be matched to the majority class with the most data. In this case, 
the majority class represents the normal operating condition where there are no issues in the well, so all categories of failures 
are excessively sampled to align with the quantity of normal data. 

The steps of this algorithm are outlined below (Zhen et al., 2023):  
Step 1: Randomly choose k points from the entire set of samples D = x1, x2, x3… xn and then define them as the sample 

cluster centers C1, C2, C3… Ck 
Step 2: Calculate the distance between each sample and the specified sample cluster center. : 

𝑑 = √∑(𝑥𝑖 − 𝐶𝑘)2 (3) 
where x1,x2,x3, .,xi ∈ D; C1,C2,C3, .,CK ∈ C. 

Step 3: assign the samples to the closest sample clusters: 

𝑥𝑖 ∈ 𝐶𝑛𝑒𝑎𝑟𝑒𝑠𝑡 (4) 
Step 4: Recalculate the new cluster centers for the samples. 

𝜇𝑖 =
1

|𝐶𝐼|
∑ 𝑥𝑥∈𝐶𝑖

 (5) 

Step 5: Continue performing steps 2 through 4 until there are no further changes in any of the cluster centers. 
Step 6: Generate additional minority samples by selecting clusters that contain either fewer or more minority classes 

and filtering them accordingly. 
Step 7: Perform SMOTE oversampling for each filtered cluster of CK. : 

𝑋𝑛𝑒𝑤 = 𝑥𝑐 + 𝑟𝑎𝑛𝑑(0,1) × (�̃� − 𝑥𝑐) (6) 
Xnew = new negative class sample generated above, 
𝑥𝑐 = represents a random negative class selected from the m nearest neighbors within the filtered clusters, 
�̃�  = refers to the negative samples in the filtered clusters except for the m neighbors. 
 

2.5. Modeling and Validation 
 

2.5.1. Modeling 
 

• K-nearest neighbor 
K-nearest neighbor (KNN) represents a conventional technique in machine learning that has been adapted for extensive 

data mining endeavors. The fundamental concept involves employing a substantial training dataset, with each data point 
defined by a collection of attributes. Essentially, every point is positioned within a multidimensional framework, where each 
dimension represents a distinct variable. When we have a new data point (test), we want to find the K nearest neighbors that 
are closest to it (i.e., most "similar"). The value of K is usually chosen as the square root of N, the total number of points in the 
training dataset (Suyal and Goyal, 2022). 

 

• Decision Tree 
The decision tree is one of the models used in supervised learning in the field of machine learning. The decision tree 

model is commonly used to solve regression and classification problems, but it is more commonly used for classification tasks. 
Through this analysis, the aim is to anticipate the result on the basis of numerous input factors by continuously segmenting 
each factor into various potential results. The decision tree adopts a hierarchical arrangement comprising a root node, decision 
nodes, and leaf nodes. Leaf nodes represent the ultimate points that are not subject to further division and contribute to 
shaping the predictive outcomes of the decision tree (Nadiah et al., 2022). 
 

2.5.2. Validation 
 

Making decisions about appropriate evaluation metrics to assess the performance of an algorithm is a crucial step in 
this research. This is because classification models trained on imbalanced datasets may achieve high accuracy but tend to be 
biased toward the majority class. In this context, the classification report and confusion matrix are essential tools for evaluating 
classification models. n the confusion matrix, four terms are used to represent the results of the classification process. These 
terms are true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The value of true negative (TN) 
indicates the number of negative samples correctly identified, whereas false positive (FP) indicates the number of negative 
samples incorrectly identified as positive. (Karsito and Susanti, 2019). 

In this study, we also use evaluation metrics, namely, accuracy, precision, sensitivity, and the F1 score, and support the 
following equations (Erlin et al., 2022): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
  (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (5) 
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𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (6) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (7) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 (𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (8) 

 

Precision: This metric measures the accuracy of the model in predicting positive classes. 
Recall (Sensitivity): This metric measures the model's ability to detect all positive samples. 
F1-score: This score combines precision and recall into a single metric that provides a comprehensive view of model 

performance. 
Support: The number of actual samples for each class in the dataset. 

 

3. Results 
 

3.1. Modeling 
 

The machine learning method was chosen on the basis of a comparison of several methods, namely, the K-nearest 
neighbor and decision tree methods. The data are divided into two sets: 80% for the training data and 20% for the test data. 
Even though the test data constitute only 20% of the data, the model created already has samples from all categories, meaning 
that the model can recognize all existing categories (Meddaoui et al., 2024). The input data include various features, such as 
Motor Ampere, Frequency Motor, Pump Intake Pressure, Temperature, OutputVolt, Pump Discharge Pressure, Input Voltage, 
and Motor Horse Power (HP). The output data include failure categories: normal, mechanical, electrical, control and system 
failures, and thermal failures. 

On the basis of Figure 5 and Figure 6 above, both models (KNN and decision tree) without SMOTE exhibit a bias toward 
the majority class ('Normal'), with poor performance on minority classes. This is a common issue in imbalanced datasets.  
Applying SMOTE improves the models' ability to correctly classify minority classes. This is evident in the significant increase in 
correct predictions for 'Mechanical Failures', 'Electrical Failures', and other minority classes. After applying SMOTE, both the 
KNN and decision tree models achieve more balanced performance. However, specific nuances in the confusion matrices 
suggest that while both models benefit from SMOTE, the extent of improvement can vary on the basis of the model and the 
nature of the data. These results underscore the importance of addressing class imbalance to achieve a more accurate and 
reliable classification model in the context of predicting failures in electrical submersible pump machines. 

It is evident that modeling without oversampling has higher accuracy than that with oversampling. This is due to the 
overfitting that occurs because of unbalanced data. To address this issue, oversampling via the SMOTE method is necessary 
(Tang et al., 2023). A validation comparison is then needed between the two methods via a confusion matrix. The results from 
the confusion matrix show that the best accuracy is achieved by the predictive model with oversampling, even though the 
displayed accuracy percentage is lower. In this case, modeling with oversampling is chosen because it provides better accuracy. 
 

 
Figure 5 Confusion matrix of the k nearest neighbor before and after SMOTE. 

 

Table 3 shows a summary of the models that have been created to predict the types of failures. 
The Table 4 shows that there is no significant difference between the two methods used. Both methods have identical 

accuracy, precision, recall, and F1 score values. However, the K nearest neighbor has a higher accuracy of 0.9127 than does the 
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decision tree, which has an accuracy of 0.9108. 
 

 
Figure 6 Confusion matrix of the decision tree before and after SMOTE. 

 

3.2. Validation 
 

The classification results from modeling with SMOTE are presented in Table 3. 
 

Table 3 Classification report. 

Model 
 

Precision Recall F1-Score Support 

KNN with SMOTE 0 0.99 1 1 1582 
1 0.81 0.75 0.78 1554 
2 0.78 0.81 0.79 1506 
3 0.98 1 0.99 1520 
4 1 1 1 1532 

Accuracy   0.91 7694 
macro avg 0.91 0.91 0.91 7694 
weighted avg 0.91 0.91 0.91 7694 
Decision Tree with SMOTE 0 0.99 0.99 0.99 1582 

1 0.78 0.79 0.78 1554 
2 0.79 0.78 0.79 1506 
3 0.98 0.89 0.93 1520 
4 1 1 1 1532 

Accuracy   0.91 7694 
macro avg 0.91 0.91 0.91 7694 
weighted avg 0.91 0.91 0.91 7694 

 

Table 4 Accuracy report. 

Method Accuracy 

K-Nearest Neighbor 0,9127 
Decision Tree 0.9108 

 

Overall, the application of SMOTE has resulted in significant improvements in the classification performance of both the 
KNN and decision tree models, especially for minority classes, demonstrating the importance of addressing class imbalance to 
achieve accurate and reliable classification models. 

 

4. Discussion 
 

The research on the implementation of machine learning methods in Electrical Submersible Pump (ESP) machines has 
identified multiple types of failures occurring over two years. These failures were grouped into categories: normal, mechanical 
failures, electrical failures, control and system failures, and thermal failures, which is also done in previous literature. (Abdalla 
et al., 2023; Mello et al., 2022). Failures often occur suddenly due to fluctuations in sensor indicators, as documented by 
previous studies on pump monitoring systems (Nguyen et al., 2020). Modeling was performed using machine learning 
techniques, specifically K-nearest neighbor (KNN) and decision tree algorithms, to predict future failures. 

The implementation of these machine learning techniques for predicting failure types in ESP machines aligns with the 
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outcomes of previous research, demonstrating that KNN and decision tree algorithms are effective tools in predictive 
maintenance applications. (Salem et al., 2022). The accuracy of these models was significantly improved by implementing the 
synthetic minority over-sampling technique (SMOTE), consistent with results reported by Santoso et al. (2020), who 
demonstrated the effectiveness of SMOTE in handling imbalanced datasets in predictive models. 

Observations from the confusion matrices reveal a substantial improvement in model performance after applying 
SMOTE, highlighting its critical role in enhancing accuracy and precision, particularly in minority class predictions. This f inding 
aligns with the work of (Chawla et al., 2002), who originally developed SMOTE and showcased its capacity to address class 
imbalance issues in machine learning models. The visual representation provided by the confusion matrices underscores the 
impact of SMOTE, making it clear that the optimization achieved in this study is not merely coincidental but rooted in sound 
methodology and validated by previous research. 

After testing, K-nearest neighbor emerged as the most optimal compared to decision trees, achieving an accuracy of 
91.27% after applying SMOTE. This aligns with similar findings in predictive maintenance literature, where KNN has often been 
highlighted for its high performance in failure prediction tasks (Al-Ballam et al., 2023). This model's capacity to predict failure 
types with high precision offers a reliable tool for timely failure warnings, reducing the occurrence of failures and extending the 
operational life of ESP pumps. These results echo the broader consensus in the field that machine learning, particularly when 
coupled with class imbalance techniques like SMOTE, can significantly improve the reliability and functionality of predictive 
maintenance systems (Zhen et al., 2023). 

This discussion effectively positions the study within the existing body of literature, emphasizing the innovative nature 
of the methodology and its alignment with prior research. The application of SMOTE not only enhanced model accuracy but 
also significantly improved predictive performance, particularly for minority failure classes. These findings highlight the critical 
role of addressing class imbalance in machine learning models, validating the methods employed in this study and underscoring 
its relevance to the field of predictive maintenance. 
 

5. Conclusions 
 

Research on the implementation of machine learning methods in electrical submersible pump machines has identified 
many types of failures that have occurred over a period of 2 years. After that, we grouped the failures according to the 
categories of damage, resulting in the identification of the following types of damage: normal, mechanical, electrical, control 
and system failures, and thermal failures. These failures occur suddenly on the basis of fluctuations in the sensor indicators. 
Modeling was then performed via machine learning to predict future failures. 

The machine learning methods used to develop a model capable of predicting failure types in electrical submersible 
pump (ESP) machines are the k nearest neighbor (KNN) and decision tree methods. These models were compared in terms of 
their accuracy levels. The implementation of the SMOTE (synthetic minority oversampling technique) significantly increased 
the accuracy and precision of both machine learning algorithms. Observations from the confusion matrices reveal that the 
models provide more accurate results with SMOTE than those without SMOTE, demonstrating that SMOTE optimizes the 
accuracy of machine learning models. The confusion matrices provide a clear visual representation of the models' performance 
before and after applying SMOTE, with significant improvements in minority class predictions highlighting SMOTE's 
effectiveness in handling imbalanced datasets. These results underscore the importance of addressing class imbalance to 
achieve more accurate and reliable classification models for predicting failures in ESP machines. 

The best algorithm model in this study is the K nearest neighbor. The classifier achieves an accuracy of 91.27% after the 
SMOTE procedure. The models can predict the type of failure that will occur with precise and functional accuracy, effectively 
addressing issues in the well. This enables timely failure warnings, reduces failures, and extends the life of ESP pumps. 
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