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Abstract

The application of Human—Robot Collaboration (HRC) in the manufacturing sector, especially in the material handling
process, is aimed at improving productivity through robots actively working alongside humans. In this condition, the robots
need to understand how to handle the objects by themselves according to user preferences with an autonomous system.
However, there have been challenges in the aspect of teaching robots to autonomously identify object grasp positions only
using an RGB camera due to the effect of camera perspective on object visualization for robots. Therefore, this study aimed
to propose a simplified method on an RGB camera for autonomous object grasping in the material handling process and
implement it for the HRC concept. The method used a prototype robot manipulator with a computer vision system for object
detection. During the execution of object grasping, the robot achieved a success rate of 86% for a single object and 76% for
multiple objects. In the HRC concept, the robot achieved a success rate of 92% for placing objects one by one and 84% for

placing objects continuously. The result also showed fast inference time when the robot in real-time detected the object,
which was even just running on the CPU and in the planning process without complexity and requiring additional equipment
aside from an RGB camera.

Keywords Human-robot collaboration - Robot manipulator - Computer vision - Material handling - YOLO

1 Introduction being physically close to each other (Baratta et al. 2023).
As a result, the idea of humans collaborating wilm)buls
is increasingly being developed. The collaboration between
robots and humans is called Human-Robot Collaboration

(HRC) (Castro et al. 2021).

Developments in manufacturing, particularly in automation,
coupled with the worldwide effects of the COVID-19 pan-
demic, have led to changes in the way work is performed.

This situation has made industry participants adjust to the
new circumstances. A significant outcome of the pandemic
is the innovation of a redesigned workspace that changes
the way people work together, with workers no longer
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In manufacturing, HRC is applied to various tasks,
including material handling (Segura et al. 2021), which
includes efficiently distributing materials and products in
the manufacturing system (Horndkova et al. 2021). In this
situation, robot and human can exchange goods, making it
important for robots to understand the intentions of the user
when giving or receiving objects (Semeraro et al. 2023).
The circumstances present a challenge in providing robots
with an understanding of how to handle objects according
to user preferences, including motion trajectory planning
while the robot grasps the objects using a gripper, which
can be applied to many different objects (Zhang et al. 2023).
These are intended to increase flexibility in object grasping
without requiring extensive information about the desired
position of the objects.

Previous studies on HRC with robot manipulators,
including those by Akkaladevi et al. (2019) using the UR
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(Universal Robot) 10 robot for the assembly of a steam
cooker. Tsamis et al. (2021) used UR 10 for pick-and-place
tasks, exchanging components between workstations. Fur-
thermore, (Lotsaris et al. 2021) used a collaborative robot
(COBOT) for front suspension assembly in public vehi-
cles, handling heavy components. Vogel et al. (2017) used
KUKA iiwa LBR 14 to assist operators in installing screws
on plates during component assembly. Paletta et al. (2019)
used KUKA iiwa LBR 7 for pick-and-place tasks in a toy
problem, arranging a tangram puzzle. Sanchez-Matilla et al.
(2020) used KUKA 1iwa LBR 7 and URS for exchanging
cups with various types of cup variations. These explora-
tions consistently use object recognition methods, specifi-
cally computer vision, to implement the HRC concept on
robot manipulators. The recognition process provides the
robot with information to understand and make decisions
based on the surrounding environment. Therefore, the com-
puter vision method is considered suitable for addressing the
challenges faced by robot manipulators in the HRC concept.

In order to make computer vision work, a camera needs
to be integrated with the robot manipulator. The camera can
be attached either to the side of the robot or separately but
directly to the robot. In addition, this integration gaws the
robot to understand and perform actions by itself based on
the information captured by the camera. In the study by Rak-
shitet al. (2023), a camera was used to determine the object
location, select the object, and figure out the gripper setup
for objects in the reach of the robot. Similarly, Rosenberger
et al. (2021) used a camera to discover the position and pose
of an object using depth information, enabling the robot
manipulator to plan and execute movements to g
object by avoiding collisions from the environment
the object. Andersen et al. (2016) used a camera to spot car
doors, providing information to estimate the position and
pose of the component. The information was later projected
onto the surface of the component, with details on the edges
for worker instructions. Park et al. (2020) used a camera
to perform object detection, which involved the capabil-
ity of the robot to specifically pick up objects in various
conditions. The results collectively show the potential for
improving the effectiveness and efficiency of robots through
computer vision.

Applying computer vision to the material handling
process for the HRC concept appears fitting based on the
discussed explorations. Most material handling processes
include moving goods and still require human participation.
Moreover, implementing computer an only needs a cam-
era, making arrangements simpler. A challenge in running
a computer vision system is considering the perspective of
the camera, which is how a camera projects a 3D object into
a 2D image (Corke 2017). However, defining objects in all
parts of the camera frame can be tough, leading to inaccurate
determination of the real position of the object. Previous

@ Springer

studies assumed the position umc object was at the center
of the camera frame and used an RGB-D camera to ignore
the perspective problems. Most of the previous studies on the
use of an RGB-D camera used the Cornell Grasp Dataset and
the Jaquard Dataset to define the pusilal of the object grasp,
as well as this conducted by Zhang et al. (2019), Ainetter
and Fraundorfer (2021), and Cao et al. (2021). In addition,
Rakshit et al. (2023) and Mousavian et al. (2019) used depth
parameters generated from RGB-D cameras in image fea-
ture extraction. Thus, both methods require an additional
step to adjust the algorithms in the datasets to the specific
conditions and involve a more intensive computational pro-
cess for feature extraction. In comparison, explorations by
Christen et al. (2023), OpenAl et al. (2021), Xing and Chang
(2019), and Zeng et al. (2018) showed using computer vision
with objects positioned anywhere in the camera frame. The
studies used reinforcement learning, which requires more
memory due to storing programs based on robot learning.
The process of using RGB-D cameras and reinforcement
learning in computer vision is time-consuming due to mul-
tiple learning procedures and the need for high-specification
devices to handle the computational load. Hence, itis inef-
ficient for use. Thus, this study offers a different perspec-
tive on applying a computer vision system to the material
handling process for the HRC concept, which proposes a
method that modifies in the robot learning process to detect
the object position through the camera and defines the cor-
relation of object position in the camera frame and robot
position as a simple method to reduce the computational
load and addresses concerns, particularly regarding camera
perspective, specifically only using an RGB camera.

In order to fully implement the HRC concept, a com-
munication system between robots and humans is needed.
One of the methods that can be used in this communication
is gestures and motions that can be generated through cam-
eras (Castro et al. 2021). During interaction, hand gestures
have meanings that can convey information. For example,
by using hand gestures to point at something, this expression
indirectly shows sign language. Thus, the use of hand ges-
tures as a communication system, which is then integrated
with a computer, can help a person to be able to communi-
cate more intuitively (Indriani and Moh 2021). In addition,
the concept of hand gestures through this camera is easier
to do because it only uses a camera. Thus, the combina-
tion of the two concepts of the automatic grasping system
that we propose and this communication system can be an
easy method to be carried out in implementing the HRC
concept. Regarding its application in previous studies, hand
gestures are generally carried out with the same concept as
object detection, namely by providing training on a dataset
that defines hand gestures, then a hand gesture recognition
mu@an be generated, as done in the studies of Noorud-
din et al. (2020), Banarjee et al. (2021), and Mohammadi
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et al. (2023). However, these methods are not efficient to use
because we need to perform an additional process of dataset
retrieval and training related to the desired hand gesture.
In order to address the problem, we use MediaPipe, which
provides a ready-to-use solution related to hand gesture rec-
ognition. In MediaPipe, we do not need to take a dataset or
training process because this library provides location points
on certain parts of the palm, which can then be interpreted
into the desired hand gesture (Zhang et al. 2020).

This study focuses on implementing autonomous object
grasping in the material handling process fuhe HRC
concept. At this point, the robot is tasked with picking up
objects with various shapes randomly placed in the work-
space and delivering the objects to user in the same area.
Moreover, the designed robot can independently handle the
grasping object process. When passing the objects, the robot
stops to await commands, identifying user hand gestures
using the same camera used for detecting the objects. This
ensures the user is ready to receive the objects. The study
uses kinematics and computer vision models to support
these processes. The kinematics model of a robot focuses
on moving the robot manipulator toward the desired point
in motion planning. The model is closely tied to the inverse
kinematics method, which adjusts the angle of each robot
joint to reach a kman coordinate point. Additionally, the
inverse kinematics method is applied to the motion of the
robot, allowing it to reach the intended object based on a
predetermined point. Computer vision is used to provide
a robot with the capability to gather information related to
objects. The concept includes defining objects based on the
position taken in a camera frame, allowing a robot to dis-
tinguish between objects in the frame. In review, this study
contributes to:

1. Introducing simplified method on an RGB camera for
autonomous object grasping in the material handling
process and implementing it for the HRC concept.

2. Integrating diverse shapes and positions of objects in the
material handling process, making it flexible to use.

3. Presenting the method that can solve camera perspective
problems on an RGB camera without complexity and
requiring additional equipment.

4. Presenting the simplified method on the communication
system between robot and human in the HRC concept.

This study uses a prototype of a 4 DOF (Degree of Free-
dom) robot mam]aalm' with servo motors as actuators in
each robot joint. The end-effector of a robot is equipped
with a gripper for picking up and placing objects. In addi-
tion, the robot framework is made using a 3D printer with
PLA (PolyLactic Acid) material. The robot is controlled
by an Arduino Nano microcontroller programmed with the
Arduino IDE and the Firmata module, accessible in Python.

Moreover, the robot camera of the system is an ESP32-CAM
programmed with OpenCV and Python, enabling it to detect
objects with the YOLO (You Look Only Once) algorithm as
well as execute robot movements.

2 Related works
2.1 Computer vision

In order to develop the autonomous system for the HRC
concept, implementing intuitive control for the robot is
important, ensuring accurate interpretation of provided
actions and commands (Al et al. 2020). The implementa-
tion includes using various sensing methods, including
the computer vision system used in earlier studies. Most
studies use RGB-D cameras, also known as 3-dimensional
cameras, that involve learning methods. The learning
methods used include separate concepts of object detec-
tion with robot motion and a combination of both. The
separate learning method uses the Convolutional Neu-
ral Network (CNN) theory, which is used in the object
detection process along with the object grasp posi (ms
well as this conducted in previous studies by Tsamis et al.
(2021), Rakshit et al. (2023), Rosenberger et al. (2021),
Zhang et al. (2019), and Rmuukul et al. (2019). The
grasp position is defined as the position of the object at
X, y, and z coordinates, which is correlated to the posi-
tion of the robot. Thus, the robot motion is then applied
using the robot kinematics method. While the combined
learning method uses reinforcement learning to define the
object and robot motion with a control policy, as well as
this conducted by Christen et al. (2023), Xing and Chang
(2019), and Zeng et al. (2018). Control policy in the robot
learning algorithm is a rule or strategy used by the robot
to make decisions or generate actions based on informa-
tion received from the environment or sensors attached
to the robot. In this case, the sensor also comes from the
camera used on the robot. While, in the case of only using
RGB cameras in the process of defining the object posi-
tion, the RGB camera is positioned parallel to the work
plane, and the ajecl is placed at the center point of the
camera frame. Previous studies by Paletta et al. (2019)
and Andersen et al. (2016) demonstrated this approach. In
our study, we will only use the learning method in object
detection, namely by using the YOLO aurilhm, which
is an algorithm with a very fast ability to detect objects
in real-time because it has a smaller computational load
(Redmon et al. 2016). In addition, we adapt the study by
Rakshit et al. (2023), which used a computer vision sys-
tem with the object grasp position defined by the cen-
troid of the grasp rectangle based on x and y coordinates.
The information was used to estimate the object position

@ Springer




M.F. Setiawan etal.

and integrate it with robot kinematics. Similarly, Zhang
et al. (2019) implemented a computer vision system to
define the object grasp position as a box, with the cen-
troid of the box as the object grasp point. Then, using that
point, the robot could plan and execute movements for
grasping the object. Based mamse two studies, we use
the same concept in defining the position of the object,
whicl ased on the centroid of a box showing the object
grasp point in the camera frame. Thus, the position of the
object at the robot position is estimated with our proposed
method, which is then used for robot motion planning.
In a separate study, Dairath et al. (2023) applied a com-

puter vision system to a prototype fruit-separating robot,
using an Arduino UNO as the microcontroller and an RGB
camera to detect fruit quality for subsequent separation.
The method included capturing images with the camera,
forwarding the information to a computer, and recogniz-
ing objects through a computer vision algorithm system
using OpenCV and Python. Inspired by the exploration, we
implemented a similar concept, using hardware for control,

robot actuators, RGB cameras, and programming language
to control the robot in this study.

The focus of our proposed method, as mentioned in
Section I, was a simple method to carry out the automatic
grasping system that reduced the computational load and
addressed concerns, particularly regarding camera perspec-
tive, specifically only using an RGB camera. In the previous
studies that we have presented, we highlighted the learning
method to reduce the computational load. We found in the
learning method used by the previous studies, which had the
same concept as ours, that they separated the feature extrac-
tion process between object detection and grasp detection.
detection in this case was the result of feature extrac-

tion from object detection itself in the form of ROI (Region
of Interest), which was re-extracted into more specialized
parts in certain parts for object grasping positions. In our
study, we directly combine object detection and grasp detec-
tion into one feature extraction process. Therefore, we can
reduce the computational load of the training and executing
processes in the learning method. Furthermore, in order to

be used for execution on the robot, information from the
result grasp detection carried out in the previous studies was
combined with depth information obtained from the RGB-D
camera. Hence, in this case, the RGB camera is not able to
be used. Thus, the method that we propose in this study
could become an alternative to this problem.

2.2 Image processing

In the Section I, we have mentioned that in order to reduce
the coffieltational load. we also define the correlation of
object position in the camera frame and robot position.
This definition is related to the use of the image processing
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method, which is a computational process used to transform
images (Corke 2017). The image transformation process
using image processing method can specifically change the
shape of the image or the perspective of the image (Bez-
maternykh et al. 2023). Thus, in order to overcome the cam-
perspeclive problem as mentioned in Section 1, we use
one of the operations in image processing, namely warping.
mrping is an image transformation process that maps all
positions in one image plane to positions in a second plane.
This process 1s often used to remove optical distortions
caused by the type of camera used or the perspective of the
camera itself (Glasbey and Mardia 1998). An example of
the application of the warping melhum:yplied to an image
can be seen in the study conducted by Arad et al. (1994) and
Ruprecht and Muller (1995). In both studies, the warping
method was used to change the face shape of an object in
the image. Whereas in our study, we use the warping method
to be able to position the plane where the object is placed
thereby it seems to be parallel to the plane oncamera.
Thus, we can find out the relationship between the position
of the object in the camera and the position of the object
in the robot position. The relationship formed is a simple
equation that does 'E(]llil't a large computational process
to calculate. Thus, in this case we can also simultaneously
reduce the computational load.

2.3 YOLO

In order to facilitate the application of the computer vision
system in the study, an object detection system relying on
the YOLO algorithm is used. YOLO is operated by using an
algorithm that identifies objects through a single-step deep
learning model, enabling it to directly predict the category
and location of an object (Wang et al. 2023). In comparison
to two-step deep learning algorithms, YOLO is exceptional
for its faster detection speed, allowing real-time application,
high efficiency, and flexibility (Li et al. 2023). Through the
predictions generated by the algorithm, the system obtains
information about the (&cts in an image, including bound-
ing boxes and labels (Yang et al. 2023). Li et al. (2019)
showed the caabilily of the algorithm to recognize objects
by achieving a mean Average Precision (mAP) of 0.928,
showing a precision of about 92.8%, using a dataset of
3600 images. Rosenberger et al. (2021) conducted a study
including 80 different object categories recognized by robot
manipulators using YOLO, leading to a robot success l'@
of 81.9%. Similarly, Zhang and Xie (2023) used YOLO to
recognize and locate the position of chilies that are blocked
by branches and leaves as an object retrieval command for a
robot. The mAP value obtained from the system was 0.892,
which was about 89.2%. The explorations collectively show
the exceptional c:nbilily of YOLO to effectively detect
objects and cover a wide range of object types, making it
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highly suitable for material handling pruccss@l this study,
we use the YOLOvS algorithm to detect the objects and get
their position in the camera frame.

YOLO processes the input image by predicting the
bounding box and the class of the object Eained in the
image. The method applied by YOLO is by dividing the
a:ut image into sections of size S x S. Each section is called
a grid cell. If the center point of an object is in a grid cell.
then the grid cellis responsible for detecting the object. Each
grid cell predicts the bounding box, the confidence score of
the box, and the (.m probability condition. The confidence
score represents how confident the model is that the box
contains an object and also haaccuratc the prediction of
the box is. In order to define the confidence sco@OLO
considers the Intersection over Union (IoU). [oU measures
how well the bounding box predicted by the model overlaps
with the ground truth of the bounding box. Meanwhile, the
class pmability condition is defined on a grid cell con-
taining an object that predicts only one class probability for
each grid cell, regardless of the number of boxes. Therefore,
the initial process of training the YOLO model requires an
annotation process of the object along with its class in order
for YOLO to use the data in the training process. Thus, this
concept makes YOLO have a very fast detection capability
that can be applied in real-time.

2.4 MediaPipe

Hand gesture is one method that can provide a natural way
of interaction and communication. One of the methods that
can be used to make robots understand hand gestures is
hand gesture recognition. Hand gesture recognition aims
to interpret human hand gestures that can use various ges-
tures to interact with the robot without touching the robot. In
hand gesture recognition, the procedure is started by track-
ing hand gestures and converting the tracking results into
specific commands for the robot. In some previous studies
using MediaPipe to implement hand eslure recognition,
as conducted in the studies of Alvin et al. (2021), Indri-
ani et al. (2021), and Mishra et al. (2023). MediaPipe is an
open-sourced library by Google that can be used for various
machine learning implementations, including hand track-
ing. The MediaPipe framework helps developers to focus
on algorithm and model development and supports applica-
tions through results that can be rmccssed through dif-
ferent devices or media (Lugaresi et al. 2019). Therefore,
in this study we use MediaPipe as a communication system
between robots and humans in the HRC concept.
hnliaPipe requires input in the form of images or videos
that can be generated through an RGB camera or RGB-D
camera. In the process, MediaPipe first trains the palm detec-
tor. This palm detector works using a model that works like
BlazeFace (Bazarevsky et al. 2019). Then, MediaPipe uses

a feature extractor to generate small segments of the palm.
Lastly, MediaPipe minimizes focal loss during training to
support some of the best detection results. The palm detec-
tion results are in the form of 21 hand landmarks in x, y, and
depth coordinates (can be seen in Fig. 1), a marker for the
presence of a hand in the input image, and classification of
the hand part as left hand or right hand (Zhang et al. 2020).
In our study, we only use these hand landmarks to define the
commands given to the robot.

3 Proposed methodology
3.1 Robot manipulator design

The robot used in this study is a prototype with 4 Degrees
of Freedom (DOF), consisting of four rotating joints and a
gripper as its end-effector. Figure 2 shows the design and
motion direction of each joint, along with the robot frame.
In addition, the motion direction of each joint was associated
with the rotation of the servo motor, where the arrow showed
an increase in the angle. The robot frame was defined based
E.hc world frame, covering joints 1, 2, 3, and 4, as well as
the end-effector, and each frame determined the position of
the respective servo motor.

From a multibody point of view, the robot was composed
of a base and four bodies (typically referred to as links)
interconnected through a revolute joint. In order to define
the robot parameters, Denavit-Hartenberg (DH) L’Een tion
was usually used (Craig 1994), which attached frames to
various parts of the robot and then described the relation-
ships between these frames. The DH parameters of the robot
in this study were presented in Table 1.

Fig. 1 Hand-landmarks in MediaPipe
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Fig.2 Design, joint motion direction, and frame of robot manipulator

Table1 DH parameters of the robot

Joint (1) Joint angle Euﬁ"sel Link length Twist
[6] (rad) [d] (m} [L] (m) angle [a]
(rad)
1 o 0.084 0.009 w2
2 o, 0 0113 n
3 o, 0 0.089 0
4 o, 0 0.2129 0

3.2 Hardware and software configurations

In terms of hardware configuration, the control system
integrated an Arduino Nano as the ccntrollenMGElgﬁR
and DS3225 servo motors as the actuators of the robot, a
power supply as the power source that supplied electric
p(.wa to the robot, an XL4015 Step Down Adapter as
the voltage reducer from the power supply to the servo
motor, the connector as a terminal connecting electric
current, an ESP32-CAM as a camera, and a PC/laptop as
an interface. 'ImPCIlapmp specifications included an
Asus X550VX with an Intel Core i7 6700HQ processor,
8GB of DDR4 RAM, Nvidia GeForce GTX 950M graph-
ics, and a 256GB SSD. Robot motion input was entered
from a PC/laptop based on information obtained from
the ESP32-aAM, which was interconnected with a Wi-Fi
signal and then processed by the Arduino to drive each

servo motor. In order to more easily understand the robot
hardware configuration, it can be seen in Fig. 3.

The software configuration used two programming
languages, C and Python, where C was used to connect
the Arduino Nano with the Firmata module and configure
the ESP32-CAM through the Arduino IDE, while Python
was used for the robot motion program with the Pyfirmata
module, which was interconnected to the Firmata module

@ Springer
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USB Cable
- Arduino Nano Serva (Joint 2)
PCiLaptop
= [ = Servo (Joint 3)
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Connector
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1
220V AC Supply Servo (Gripper)

Fig. 3 Wiring diagram of hardware configuration

Robot
Manipulater
Motion

Computer
Vision

Python

Firmata

Module
ESP32 Cam
Configuration

Arduino IDE

Arduino
Nano

PC/Laptop

Fig. 4 Software configuration diagram

in C by COM port. Additionally, Python also controlled
computer vision, using the OpenCV library to access the
ESP32-CAM and establish communication with Arduino.
Then it commanded the robot based on object detection
from the YOLOvVS algorithm through Visual Studio Code.
For more details, it can be seen in the software configura-
tion diagram in Fig. 4.

3.3 Robot po! n and motion conditions

The movement of robots in HRC included three conditions,
namely, object detection, grasping objects, and delivering
objects. During object detection, the robot stayed station-
ary in a predetermined position, with lheemd-eﬁ'a:mr slope
being 60°. After detecting an object in the camera frame,
the robot moved to grasp the object based on the centroid
location information (& the object grasp point. This cen-
troid location defined the position of the object against the
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position of the robot. Thus, in this condition, the robot kin-
ematics calculation used was inverse kinematics, which was
to find out the angles of each robot joint at the position of the
object that had been defined previously applied to be able to
run the robot to grasp the object. Note that the object grasp-
ing condition in this study was defined with the assumption
that the object grasp position was at z = (). As for the third
condition, namely the condition of the robot delivering the
object to the user, it involved a certain point that had been
defined.

The inverse kinematics calculation used in this study was
a geometric approach method where the calculation of the
angle of each joint was done byculaliug using the con-
cept of trigonometry, as done in the study of Cahyono et al.
(2022). In this study, calculating each joint angle of the robot
was done by looking at two angles of view of the robot,
namely in the XY plane (top view) and the XZ plane (front
vie\n which then calculated each link length relationship
and the position of the robot end-effector to the angle of each
robot joint. For more details regarding the calculation of the
iu‘nse kinematics of the robot, see Fig. 5.

In Fig. 5(a), it can be seen that the equation for calculat-
ing the angle of joint 1 (#)) seen from the top viewpoint in
the XY plane with x;, and y, as the robot end-effector coor-
dinates is as follows:

v
tanf, = =
Ty, 6]
e
0, = tan T (2)
x,
X =242 @)

In Fig. 5(b), the equations for calculating the angles of
joint 2 (6,), joint 3 (6;), and joint 4 (6,) viewed from the

Fig.5 Geometric approach for Vi
inverse kinematics: a XY plane;
b XZ plane

T

front viewpoint in the XZ plane can be found. The relation-
ship between these two points of view was in the x coordi-
nate used, namely x,. x, was the coordinate on the x-axis
for the robot in the XZ plane. x, would be equal to x, (from
Fig. 5(a)) if in the XY plane, the y, was at point 0 or in other
words, the angle of joint 1 was 0. Thus, in using this geom-
etry approach method, calculations had to first be made in
the XY plane and then in the XZ plane.

As for being able to calculate each joint angle of the robot
in this study using the concept as done by Asada (2005), the
first thing that needed to be done was to determine the grip-
per tilt angle (6). In this study, we used a tilt angle of 45°.
Thus, from this tilt angle, the position of joint 3 of the robot
(x5 and z3) could be known. Then, from that position, using the
concept of the cosine rule, the angles of joints 2 and 3 could
be obtained. Meanwhile, joint 4 was obtained by considering
the angles of joint 2, joint 3, and the gripper tilt angle. But it
was also necessary to know that the condition of the robot
apper position in this study was shifted from the straight-line
position of the robot manipulator. The desired position of the
robot when picking up the object was at pnll F (xp and zp).
‘Whereas in the application of this formula, the paon of the
robot end-effector was at point E. Thus, it was necessary to
adjust the position of the object to the position of the robot in
this study using the equations that can be written as follows:

X, = rcosf,, (4)

(3)

The value of x, and z, was the value of the pailiuu shift
that needed to be done to be able to adjust to e position
of the robot gripper. Meanwhile, r was the shift of the robot
end-effector point based on the formula (point E) to the robot
end-effector pointin this study (point F), which was 0.028 m.
Thus, this position adjustment can be written as follows:
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Xp =X+ X, (©)

w=z+3, )

Therefore, the adjustment process meant that the object
position and the robot end-effector point in this study were at
point F, while the position that was given to the inverse kine-
matics method in order to get the point F position was point E.

Then, using this new position, the position of joint 3 of the
robot can be determined using the following equations:

Xy =X — Lycos @, (8)

z3=2zp +Lysing,, (O]

Thus, the equations for the angles of joint 2, joint 3, and
joint 4 can be written as follows:

(10

an

0y =180 - p, (12)

o) = mn_'(%) (13)

» L’f +c2
@, = COs pTI (14)
y=a +a (15)
O,=0,-0;+6, (16)

The position of the robot given in this study when it was
positioned to identify objects is shown in F¥4. 6. These posi-
tions were positioned at joint angles of: (1) ¢, = 90°:(2) 6,
=907 (3) 05 = 30% and (4) 0, = 120°. T]mosition of this
robot joint paid attention to the direction of rotation of the
servo motor towards the desired direction of motion of the
robot. While the ESP34ZEIM, which was used to detect the
objects, was placed on the robot end-effector and in a case.
The distance of the camera lens to the 1'919 workspace was
(.170 m. As a note in this study, in order to be able to posi-
tion the angle of the robot joint thereby it could apply to the
previous inverse kinematics equation, it was necessary to
initialize the robot condition. The initialization condition
was a condition where the robot manipulator was positioned

@ Springer

Fig. 6 Initial position of the robot

in a position parallel to the x-axis. Thus, it could be clearly
known the rotation relationship of each servo motor to each
part of the robot.

3.4 Dataset preparation

In this study, computer vision, supported by the OpenCV
library and the YOLOvS algorithm integrated into Python,
was applied for object detection. Following this result, the
aimed objects were components of the belt tightener pro-
totype. Object detection was facilitated by the OpenCV
library, which accessed the ESP32-CAM camera, followed
by the implementation of the YOLOvS algorithm. In this
study, we used the YOLOv8n model, known for its light-
weight nature, to decrease computational load during both
robot operation and object detection.

The determination of an object dataset was important
for the YOLOVS training process of the algorithm. This
step allowed YOLOvS to process information related to the
object dataset, enabling the subsequent application of the
object detection algorithm. Ae tionally, the dataset retrieval
process included capturing images of objects placed on a
measuring mat in various positions, minimizing the potential
for errors in object detection. The measuring mat, featuring
0.010 x 0.010 m boxes printed on A4 paper, serves as the
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backdrop for photographing a single component and multi-
ple components, as shown in Fig. 7. The dataset for the study
comprised a total of 530 images, each with a length of 640
pixels and a width of 480 pixels.

After capturing the dataset image, adjustments to the
image frame were necessary to establish a relationship
between frame conditions and actual positions. The study by
Zeng et al. (2018) had a similar challenge with non-parallel
camera positions with the object plane. This issue was from
a camera perspective, as mentioned in Section 1. The study
said that it was required to change the image position of the
frame as though it were parallel to the object plane for a
precise object position definition. Therefore, a process called
“warping” (as mentioned in Sect. 2.2) was used to achieve
this arrangement. In this context, warping was the deforma-
tion process used to manipulate images in image processing,
which included various methods such as cropping, scaling,
rotation, translation, etc. In this study, we used the warping
to adjust the position of the frame to create the appearance
of a parallel camera position to the work plane, as shown in
Fig. 8, and also included the cropping process to exclude the
robot tip of the gripper using the OpenCV program called
“cv2.warpPerspective”. Consequently, the image size in
the object dataset after warping was 617 pixels in length

Fig.7 Object dataset capture
positions: a Single; b Multiple

(@)

Fig.8 Warping process of
object dataset: a Before warp-
ing: b After warping

(a)

and 247 pixels in width. During warping, the placement of
points forming the new frame was adjusted the lines on the
measuring mat. Furthermore, in order to determine the final
image size, we took the largest image pixel difference for
each frame coordinate.

The object dataset that had been through the warping
process in order to initiate the training process needed to be
annotated first. Annotation was the labeling object process
in the image frame, conducted using Labellmg in this study.
The procedure included drawing a box around the object and
the object grasp point, as shown in Fig. 9. The box around
the object defined the entire body part of the object inside
the camera frame, while the box at the object grasp point
was located where the robot should grasp the object. Labe-
IImg automatically provided details about the points that
formed these boxes and the object class. In this study, there
were 10 classes (Pully, Frame, Base, Shaft, Screw, Pully
Grasp, Frame Grasp, Base Grasp, Shaft Grasp, and Screw
Grasp), defined by codes () through 9. Each class represented
a component of Lhe]l tightener and its grasp point. Moreo-
ver, the robot used the position of the object grasp point to
determine the object grasp position, as explored by Zhang
et al. (2019). This position was determined by consider-
ing the capability of the gripper to grasp the object and the

(b)

(b)
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Fig.9 Dataset annotation process

location on the measuring mat. The measuring mat played

an important role, necessitating accurate observation of the
position of the object grasp point to avoid errors in the object
position definition of the robot. Following the annotation
process, the captured image data, along with the labeled
data, was consolidated and stored in a folder for training
using YOLOvS.

After creating the object dataset, the training process
was initiated. In this study, object dataset training was con-
ducted using Google Colab, a browser owned by Google
that facilitated the execution of Python programs. Moreo-
ver, Google Colab was exceptional for providing free access
to GPUs, making it ideal for training object datasets with-
out congesting the resources of the computer. In order to
perform YOLOvS algorithm training, the dataset needs to
be divided into three groups, namely “train”, “test”, and
“valid”. The “train” folder included datasets for training,
the “test” folder for testing, and the “valid” folder for valida-
tion. Consequently, the object dataset acquired earlier had to
be distributed into these three groups, with proportions of
70% for train, 10% for test, and 20% for valid, following the
methodology shown in Wang et al. (2023 ). In this study, the
optimal number of epochs was set at 200, representing the
complete cycle in which the entire training dataset had been
used to update model parameters.

@ Springer

3.5 Defining the relationship of object position
in camera frame and robot position

The YOLOvS algorithm provided information about the
position of objects in the camera frame, including the points
showing the annotated boxes and the corresponding class
name code. The object detection processed by the robot
in this study required the box centroid of the object grasp
point obtained by adding up the positions of points on the
same axis from the box and later dividing by 2. Moreover,
it was important to observe that the pixel calculations in the
image were based on the top-left corner point, serving as the
O-pixel reference for each frame axis. The x-frame showed
the hurizoaxis. while the y-frame represented the verti-
cal axis of the image.

In the dma:t, the position of the object grasp point
depended on the location of the object relative to the meas-
uring mat. Therefore, in the camera frame for detection,
the object in real-time was also positioned like the dataset,
which was obtained through warping. Afterward, we set the
center point of the camera frame along with the horizontal
and vertical lines that intersect the center point and made
sure that the horizontal line was parallel to the horizontal
line of the measuring mat, and the same was applied to the
vertical line. This process established a reference position
connecting the camera frame and the robot position. In this
study, the aller point of the camera frame was at (in units
of meters) x = 0.250 and y = —0.005 in the position of the
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robot. These values could be different in some cases, for
example, depending on the robot and the camera used, as
well as the camera position on the robot end-effector. There-
fore, it could be adapted. The negative y-axis value showed
the point was on the left side of the centerline of the robot
position, while the positive y-axis was on the right side. Note
aal in this study, the x-frame of the camera was defined as
the y-axis pcsition' the robot, and the y-frame of the cam-
era was the x-axis position of the robot.

The center point of Lheamera frame was used to define
the relationship between the position of the object in the
frame and the robot position. We placed some points posi-
tioned on the horizontal and vertical lines that intersect the
center point of the camera frame using the OpenCV program
called “cv2.circle”. These points were important for defin-
ing the equation connecting each camera frame position to
the robot position. The formation of the equation included
placing points at 0.010 m intervals against the camera center
point of the frame and recording pixel changes in the camera
frame for each 0.010 m shift. This process gradually con-
tinued until the point was out of the camera frame. In this
study, the average pixel change of the horizontal line was
35 pixels, and the vertical line was 24615. These values
could also be different, like in the case of the center point of
the camera frame in the position of the robot before. There-
fore, it cuulsu be adapted. The equations defining the
relationship between the position of the object in the frame
and the robot position, considering the centroid of object
grasp (X, gium A ¥, 0 50y) and the camera center point of
the frame (x,,, and y_,,,), are as follows:

L ¥medium < Yeam
.y
Koo = 0250 + ((%) x().()]()) an

2. Ymedium > Yeam

Vinediom ~ e (18)
Ko = 0250 — ((%) x().()]())
3. Xmedum < Xcam
X, —X .
o = ~0.005 — ((Zm_Zmstin )  0.010) 19
o 35
4. Xmedium > Xcam
Voo = ((W) x().m()) ~0.005 (20)

The location of the object in the robot was determined
by the x,,, and y,... The center point of the camera frame
was 314 pixels in the x-frame (x_,,,) and 123 pixels in the
y-frame (y ). A conversion factor of 0.010 was applied to
change the value resulting from the consideration of pixel
shift into meter units. The values of 35 and 24 were used to

determine pixel units from the consideration of the centroid
of object grasp and the camera center point of the frame.
‘Whereas the values of 0.250 and —a)()S obtained from the
center point of the camera frame in the position of the robot
were used to get the specific position of the object in the
position of the robot with consideration of the robot axes
and the camera axes. In order to easily understand these
concepts, for example, the x .., 15 at 320 pixels and the
Ymedium 18 at 90 pixels. These positions mean that the equa-
tions we will use are e, 17 and 20. Meanwhile, Eqgs. 18
and 19, which are also used to determine the position of the
object at the robot position, will be skipped. Before, we BJ
mentioned that the x-frame of the camera was defined as the
y-axis position of the robot, and the y-frame of the camera
was the x-axis position of the robot. It means that the larger
the x-frame value, the more the position of the point is to the
right of the robot, which means that the y-axis position of the
robot will be larger. Meanwhile, the larger the y-frame value,
the closer the point position is to the robot, which means
the x-axis position of the robot will be smaller. This also
applies to the opposite condition on each axis. Therefore, if
the x4, 15 at 320 pixels, it will be known that the object in
the position of the robot on the y-axis is larger than -0.005.
Thus, after the conversion of pixels to meters, it has to be
added up by -0.005. While the ¥y.qum 15 at 90 pixels, it
will be known that the object in the position of the robot on
the x-axis is larger than 0.250. Thus, after the conversion
of pixels to meters, 0.250 has to be added up by that value.

3.6 Workspace

The workspace of the robot and user was in an unobstructed
environment, signifying the realization of the HRC concept
in which the user was positioned alongside the robot. The
objects designated for grasp by the robot were positioned in
front of it, as shown in Fig. 10.

In Fig. 10, the robot was placed on the table directly in
front of the user, and the material handling process occurred
in the space between the parties. The HRC concept started
with the component object placed in front of the robot, rep-
resenting a real industry scenario where the object origi-
nated from another workstation or worker. The placement
was independent of the user implementing the HRC concept
in this study. Whenever the robot identified the object using
its camera, it moved to grasp the object and position it in
front of the user. However, iuslef immediately deliver-
ing the object, the robot awaited a command from the user.
The user communicated the command for the robot to give
the object through hand gestures. Following the command,
the robot delivemlhe object to the user at a predetermined
point, ensuring a safe interaction between the robot and the
user.
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.
Robot
Manipulator

Fig. 10 Robot and human workspace

3.7 Identification of hand gesture

In order to perform the HRC concept in this study, the com-
munication system implemented was a hand gesture given
by the user to the robot as an instruction to deliver the object.
This hand gesture was given in front of the robot camera
which can be seen in Fig. 11.

InFig. 11, we can see the hand gesture of the user defined
using MediaPipe. This study used hand landmarks generated
by MediaPipe to access points on the user’s fingers. Blue dot
and red dot are points that have an important role in giving
commands to the robot. If the user positions the palm in
an open position, in this case the position of the blue dot
is above the red dot, the command given to the robot is to
hold the object. Meanwhile, if the user positions the palm
in a closed position, in this case the position of the blue dot
is below the red dot, the command given to the robot is to
give the object.

Fig. 11 User’s hand gestures
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4 E(periments and results

In this section, we confirm the validity of the meth-
ods described in the previous section with the following
experiments:

1. Testing the robot when grasping the objects. This experi-
ment aims to validate the previously established equa-
tions. Moreover, the test also assessed the performance
of the robot in predicting and executing object grasp
positions.

2. Testing the robot when implementing the HRC concept.
This experiment aims to assess the success rate of the
robot and evaluate how it executes the HRC concept to
successfully deliver all the objects to the user.

3. Testing the accuracy of hand gesture recognition imple-
menting in the HRC concept. This experiment aims to
assess the capabilities of the communication system
applied to the HRC concept of this study.

4.1 Performance on grasping objects
4.1.1 Datasetevaluation

The results obtained from the object dataset that had been
trained using the YOLOvS algorithm were in the form of
the robot capability to detect objects, as shown in Fig. 12,
The main indicators that defined the robot capabilities were
mean Average Precision (mAP), precision, and recall. In
this study, we didn’t make any changes to the YOLOv8's
parameters except for the epochs and got the results of those
indicators as shown in Table 2.

In Table 2, we can see the mAP, precision, and recall
values resulted from the model training proces@ by the
YOLOvS algorithm. The mAP @0.5 means that the object
is classified correctly and the predicted ubj@ounding box
had an ToU higher than or equal to (0.5 with the ground truth
bounding box. Precision is defined as the ratio of the num-
ber of correct predictions to the total predictions that are
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Fig. 12 Example of object detection results

Table2 Evaluation on dataset

Class Precision (%) Recall (%) mAP@0.5 (%)
All 92.6 925 925
Pully 98.0 1000 99.5
Frame 98.7 1000 99.5
Base 98.3 1000 99.5
Shaft 98.3 1000 99.5
Screw 98.9 1000 99.5
Pully grasp 599 59.1 517
Frame grasp 100.0 923 95.0
Base grasp 80.9 800 862
Shaft grasp 95.8 96.0 954
Screw grasp 97.0 976 99.4

predicted as positive values. In addition, Recall is defined
as the ratio of the number of correct predictions to the total
number of positive actual conditions. The data in Table 2
was obtained from the model prediction of the dataset in
the "valid" folder, which was new data outside the training
dataset. It can be seen in the overall class that the model pro-
duces very good predictions, as seen by the mAP, precision,
and recall values of 92.5%, 92.6%, and 92.5%, respectively.
However, these values are not solely used as a reference in
evaluating the performance in object grasping in this study
because specifically the class that is responsible for object
grasping is the "grasp” class. It can be seen that the "grasp”
class has a tendency to have lower precision and recall val-
ues than the "non-grasp” class. This happens because of the
different can.itions for these classes. For more details, it can
be seen in the confusion matrix from the results of the model
training procﬂ shown in Fig. 13.

Figure 13 shows confusion matrix of the training
model result, which provides information on the relation-
ship between the detection mme model
(predicted) and the actual condition (true). Based on this
matrix, we can identify the object detection accuracy
generated in each class by considering the True Positive
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Fig. 13 Confusion matrix of object detection model

2z

(g), True Negative (TN), False Positive (FP), and False
aagative (FN) values, which can be formulated in Eq. 21.
TP is positive data that is predicted correctly. TN is nega-
tive m predicted correctly. FP is nc—gam'c data
but predicted as positive data. While FN is positive data
predicted as 'negative data. In the case of this study, the
model error appears because it incorrectly predicts the
class defined as background or otherwise. The definition
of this model error can be seen in the FP and FN values.
In this study, model error only appeared in the “grasp”
class. Meanwhile, the “non-grasp” class did not have FP
and FN values, which meant that the “non-grasp” class
has a detection accuracy of 100%. Whereas the detection
accuracy for each class in the “grasp” class, with a total of
292 instances that were supposed to be detected, is shown
in Table 3.

gccuracy =

TP+ TN

_ —  x1
TP+ IN+FP+ FN N

@n

@ Springer




M.F. Setiawan etal.

Table3 Accuracy of “grasp” class

Class TP TN FpP FN Accuracy (%)
Pully Grasp 13 259 11 9 93.15
Frame Grasp 31 253 6 2 97.26
Base Grasp 21 259 8 4 95.89
Shaft Grasp 24 266 1 1 99.32
Screw Grasp 40 250 1 1 99.32
Average accuracy 96.99

Based on Table 3, the accuracy produced by each class
in the "grasp" class has very good accuracy, with an aver-
age accuracy of 96.99%. However, when looking in more
detail at the model error value in the "grasp” class, there
was a condition of multiple label classification, which was
a condition where one class has several label definitions.
In this study, this n'lditicn occurred because the defini-
tion of the object grasp point was determined based on
the pﬂsitilﬂf the object on the measuring mat and the
capability of the robot gripper to grasp the object, which
caused the object grasp point to vary according to the posi-
tiorml orientation of the object in the robot’s workspace.
An example of this condition can be seen in Fig. 14.

Figure 14 shows that the grasping point of the Pully var-
ies. This condition was also observed in other components,
subsequently affecting the confidence score produced by
the model prediction and the @el learning process. The
confidence score affected the precision and recall values,
as shown in Fig. 15. Meanwhile, the model learning pro-
cess affected the capability of r_heeodel to learn, which was
defined by the loss value as seen in Fig. 16.

Fig. 14 Variety in Pully’s grasp
points

Pully 1.0

Pully Grasp 0.8

P png

1.0

Pully

Pully Grasp 0.8
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InFig. 15, it can be seen that on the precision-confidence
curve, a low confidence score in the “grasp” class had a
much lower precision than the “non-grasp™ class. This meant
that at low confidence there were many model errors in
predicting as a result of the selection process on the ToU
value of all label definitions in the class, and if the label
did not meet the loU value, it was defined as negative data.
‘Whereas on the recall-confidence curve, the recall decline in
the “grasp™ class was much faster than the “non-grasp” class.
In this case, it meant that in the “grasp” class, the model
lost its positive data faster. Therefore, the model tended to
produce fewer detections at high confidence.

In Fig. 16, it can be seen that there are two main loss
parameters resulted, namely box_loss, which measures the
prediction error in placing the bounding box surrounding
the object in the image. This includes errors in predict-
ing the position (centroid coordinates), size (width and
height), and shape (aspect ratio) of the bounding box.
Meanwhile, the other parameter is cls_loss, which meas-
ures the error in classifying objects inside the predicted
bounding box. These two parameters are each considered
against the epoch value, which is the learning cycle of the
model on the dataset. Based on the loss graph, it can be
seen that the model had a tendency to be slower in learn-
ing. This condition occurred as a result of the model hav-
ing difficulty in inferring the exact features of the “grasp”
class that distinguished it from its surroundings, such as
its unique color, shape, size, etc.

In addition to the main indicators, there were other
indicators related to the effect of model building and
conditions when the model was run on the device PC/
laptop. The other indicators were inference time, model
size, and training time. The inference time result from the
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object dataset training process was 4.1 ms. However, the
condition would be different if the model were applied in
real-time through the camera, as in this study. The infer-
ence time obtained when the robot in real-time detected
the object and was executed by the CPU was 60-70 ms
(16.67-14.28 fps). Meanwhile, the model size generated
for the results of the object dataset training process was
5.94 MB. As for the training time required, it was 0.704
hours, or about 42 minutes.

4.1.2 Physical evaluation
The test of the robot when grasping the objects involved

the use of a measuring mat. It was conducted 10 times,
both with a single object and multiple objects, following
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the method shown by Rakshit et al. (Rakshit et al. 2023).
The object was randomly placed in the robot workspace,
each with a predetermined orientation based on the grasp-
ing capability of the gripper. The analysis determined the
success percentage of the robot in predicting and effectively
grasping objects. However, the prediction of object grasp
was specifically conducted below the condition of a single
object, taking into account I]ﬂp}'a]elermincd points (in
units of meters), namely: (1) x = 0.250, y = -0.005; (2)
x=0.220, y = -0.005; (3a =0.270, y = -0.005; (4) x
=0.250, y = -0.020; (5) x = 0.250, y = 0.020; (6) x =
0230,y = —Of)a (7) x=0.240, y = 0.050; (8) x = 0.260,
vy = -0.060; (9) x = 0.270, y = 0.050; dan (10) x = 0.270,
¥ = —0.040. Thus, the accuracy of the robot in predict-
ing object positions could be determined. Meanwhile, the
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conditions of the multiple objects were also considered with
objects that were randomly positioned without following
any specific arrangement. In this situation, observing the
arrangement in the program, the order of object grasping
was defined sequentially, starting from Frame, Shaft, Pully,
Screw, and Base.

In testing the robot for grasping a single object, two
ssments were performed, namely, success in predicting
object grasp and the execution of grasping the ajecl by
the robot, considering predetermined points, as shown in
Table 4.

In Table 4, the results of the test showed how well the

ass

robot performed in grasping a single object placed in dif-
ferent positions. The outcomes covered both the prediction
and execution of the robot. In addition, predictions were
generated using calculations in the robot program for the
x and y axes resulted by Eqs. 17, 18, 19, 20. These cal-
culated positions were later compared with predetermined
ones, leading to errors expressed for the x and y axes. Fol-
lowing these values, the objects’ average error values were
considered to find the total average error. While the success
rate in the execution of the robot for g aBmg objects was
evaluated based on the capability to reach the position of the
object and lift it.

Based on Table 4, the error values varied for each nject,
and the total average error was approximately 0.004 for the
x-axis and 0.004 for the y-axis. The error was influenced by
the condition of placing the center point of the camera frame
on the measuring mat, the comacm when annotating the
object, the equation in defining the position of the camera
frame to the robot position, and the precision of object detec-
tion. The condition of placing the center point of the camera
frame on the measuring mat concerned the repeatability of
the robot, and in this case, the robot used in this study has
very poor repeatability due to the condition of the actua-
tor used. Meanwhile, in this study, to be able to carry out
the proposed concept, it required conditions when the
robot would grasp the object, the same as the dataset used.
The consideration against the conditions when annotating
objects, this was related to the influence of the camera per-
spective, which required maintaining consistency in placing
the object grasp point. The equation in defining the camera
frame against the robot position was related to the possibil-
ity of inconsistent changes every 0.010 m shift in the work
plane against the camera frame plane as a result of the cam-
era position shifting from the condition when defining the
frame position against the robot position. Meanw hile, when
considering the precision of object detection I:Bhe YOLO
algorithm, this was related to the difficulty of the model to
be able to infer the actual position of the object. Therefore,
these things become very important considerations to be
able to reduce the error value. While for the execution of the

robot, the percentage of robot success in grasping objects
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Table 4 Results of grasping a single object

Object / Robot prediction Error Robot
Component (meters) execution
x ¥ x ¥
Pully 0248  -0.006 0002 0001 ®
0220 -0.007 0000 0002 ®
0266  -0.004 0004 0001 ®
0245  -0.021 0005 0001 -
0250 0012 0.000 0.008 ®
0230 -0.059 0000  0.009 ®
0248 0.050 0.008  0.000 [ ]
0265 -0.065 0005 0.005 -
0274 0036 0.004  0.006 [ ]
0276 -0.47 0006 0.007 [ ]
Pully’s average error 0.003  0.004 Total
8/10
Frame 0264 -0.006 0014 0001 [ ]
0224 -0.009 0004  0.004 [ ]
0278 -0.008 0008 0.003 ®
0258  -0.023 0008 0.003 [ ]
0256 0.024 0.006  0.004 ®
0229  -0.057 0001  0.007 [ ]
0246 0.051 0.006  0.001 ®
0268 -0.067 0008 0.007 ®
0277 0.047 0.007  0.003 ®
0275  -0.043 0005  0.003 ®
Frame’s average error 0,006  0.004 Total
10/10
Base 0254 -0.008 0004 0003 ®
0220 -0.003 0000 0002 ®
0275 -0.005 0005 0.000 [ ]
0253 -0.023 0003 0.003 [ ]
0253 001 0.003  0.009 [ ]
0235  -0.061 0005 0011 [ ]
0244 0.051 0.004  0.001 [ ]
0262  -0.064 0002 0.004 [ ]
0278  0.052 0.008  0.002 ®
0273 -0.051 0003 0011 [ ]
Base's average error 0.004  0.005 Total
10/10
Shaft 0251 —0.003 0001 0.002 [ ]
0227 -0.007 0007 0.002 ®
0266  -0.004 0004 0.001 -
0251 -0.021 0001 0.001 ®
0253 0016 0.003  0.004 ®
0235  -0.053 0005 0.003 ®
0248 0.046 0.008  0.004 [ ]
0268 -0.064 0008 0.004 [ ]
0278 0044 0.008  0.006 [ ]
0274  -0.046 0004  0.006 [ ]
Shaft’s average error 0.005  0.003 Total
9/10
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Table4 (continued)

Object / Robot prediction Error Robot
Component (meters) execution
X Y X Y
Screw 0.251 —0.010  0.001  0.005 [ ]
0.225 —0.005  0.005  0.000 [ ]
0.265 —0.008  0.005 0.003 -
0.249 —0.022  0.001 0002 [ ]
0.248 0.020 0.002  0.000 [ ]
0.228 —0.058  0.002 0.008 [ ]
0.235 0.043 0.005  0.007 -
0.265 —0.066  0.005 0.006 [ ]
0.264 0.047 0.006  0.003 -
0.269 —0.045  0.001 0.005 -
Screw’s average error 0.003  0.004 Total
&/'10
Total average error 0.004  0.004 Success rate
86%

Notes: (1) @ = successful
(2) = = fail

was 86%. This showed that the robot had a good capability

Table5 Results of grasping the multiple objects

Object/Component Robaot execution
Pully 9/10
Frame 8/10
Base 710
Shaft 8/10
Screw 6/10
Success rate T6%

to apply the concepts used in this study.

In testing the robot for grasping multiple objects, only
the success of the execution of grasping objects by lh@m
was considered and evaluated based on the capabinf of the
robot to reach the position of the object and lift it, as shown
in Table 5.

In Table 5, it was evident that the success rate of the

robot in grasping multiple objects during the execution was
76%, showing a decrease in the capability compared to the
single object. This decline occurred because the robot ini
tially defined the positions of all objects, and when grasping
one object, the robot inadvertently caused other objects to
shift, affecting its capability to grasp the intended object.
The robot determined object positions based on the initial
placement, leading to inaccuracies during grasping in the

multiple object condition. Additionally, the order of object
grasp was influenced by the object detection algorithm.
Despite a predefined order, the robot grasped objects based
on the sequence in which the objects were detected by the
YOLO algorithm. This supported the interpreter proper-
ties of Python, executing programs sequentially from top
to bottom.

4,2 Performance on HRC concept

The test of the robot when implementing the HRC concept
was explored to assess the capability of applying HRC to a
robot manipulator in the material handling process. Before
exploring, comprehending the process of implementing the
HRC concept was important, as shown in Fig. 17.

In the execution of the HRC concept, the robot was
initially positioned in the defined workspace, as shown in
Fig. 17. The robot movemmn identifying an object through
its camera, delivering it to the position of the user. In step 4,
the user commanded the robot using hand gestures detected
by MediaPipe, capturing the palm of the user. Furthermore,
the pose point on the finger of the user served as a com-
mand input for the robot. An open-finger position instructed
the robot to hold the object, while a closed-finger position
instructed the robot to give the object to the user. After giv-
ing out the object, the robot returned to its initial position
and identified the object.

The test conducted on the HRC concept assessed the
success rate of the robot, evaluating how it executed the
HRC concept from initiation to completion in conditions
of random object positions and without a measuring mat.
This test was conducted 10 times that involved five te
which the objects were placed one by one, waiting for the
robot to be in a position to detect each object. The remaining
five tests included placing objects continuously, regardless
of whether the robot was still in motion or grasping ubjea.
The results of the test in executing the HRC concept are
shown in Table 6.

Table 6 shows the success rate of the robot in grasping
objects during the execution of the HRC concept was 92%

in

for placing objects one by one and 84% for placing objects
continuously. Similar to the issue encountered with single-
object grasp, the success of the robot in completing the HRC
concept was dependent on successfully grasping objects.
Ensuring the capability of the robot to grasp objects accu-
rately was important for the execution of the HRC concept
in this study. However, it was important to observe that, for
the robot to receive instructions effectively, precautions had
to be taken to avoid objects obstructing the camera, allowing
the robot to interpret hand gestures correctly.
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n

Step 1: Step 3: Step 4
Initial Position of Put the Object on tomatic Positioning Wait for User's
Robot Manipulator the Robot Workspace for Grasping Instruction

,’ 2.
. s ’
Step 5 Step 6 Step 7:

The Instruction Robot Gives Back to the
is Given by User the Object Initial Position

Fig. 17 HRC steps of concept

Table6 Performance on the HRC concept 4.3 Performance of hand gesture recognition

Object/Component Robot execution

In testing the performance of hand gesture recognition in this

Onc by onc Continuously study, we used a dataset that we defined with various hand
Pully 5/5 5/5 positions and poses (can be seen in Fig. 18). This dataset con-
Frame 5/5 45 tained 154 images, with each image measuring 640 x 480
Base 5/5 5/5 pixels. In order to produce more robust accuracy,ns aug-
Shaft 45 45 mented the dataset using Albumentation, which was an open-
Screw 45 3/5 source Python library for fast and flexible image augmentation
Success rate 0% 84% (Buslaev et al. 2020). The augmentation that we performed

Fig. 18 Sample of hand gesture dataset
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Vertical Flip

Horizontal Flip

Fig. 19 Sample of data augmentation of hand gesture dataset

Table7 Performance of hand gesture recognition

Dataset Number of true Accuracy (%)
predictions
Original dataset 143 92.86
Horizontal flip 139 90.26
Vertical flip 140 90.91
Gaussian blur 143 92.86
Random brightness contrast 142 92.21
Average accuracy 91.82

was with the Horizontal Flip, Vertical Flip, Gaussian Blur,
and Random Brightness Contrast pipelines, each applied to the
original dataset (can be seen in Fig. 19). Thus, each of these
pipelines produced 154 images as well, and then we compared
the augmentation results of each pipeline with the original
dataset to get the accuracy in each of these conditions. Fur-
thermore, we averaged the accuracy results of each condition
to get the overall accuracy of the hand gesture recognition
ned in this study. The parameters that we used to calculate
the accuracy of hand gesture recognition were the number of
true predictions (meaning all hand landmarks appear) and the
total images, which could be formulated as follows:

Number of True Predictions
Total Image

Accuracy = x 100% (22)

Based on Eq. 22, the accuracy of hand gesture recognition
in this study can be presented in Table 7. The average accuracy
of the entire dataset had an accuracy rate of 91.82%. The dif-
ference in accuracy produced by each dataset also has a value
that is not much. In this case, MediaPipe has a high accuracy
rate even though it is applied to a variety of different condi-
tions. Therefore, the use of MediaPipe in developing a com-
munication system on the HRC concept can be the best option
for ease of use and setup. However, in practice, as mentioned
in Sect. 4.2, this concept can only be applied if the object does

Gaussian Blur Random Brightness Contrast

not obstruct the camera, meaning that the landmark points
used as references must be visible to the camera.

5 Discussion

In the previous tests, the prototype of robot manipulator suc-
cessfully executed the HRC concept in material handling
process. However, some issues require consideration and
evaluation. In Section 1, we concentrated on introducing
a simplified method of autonomous object grasping in the
material handling process for HRC. This method was related
not only to the robot used but also to the other aspects used,
including cameras, detection positions, and others. When
viewed from the robot used, it affected the accuracy of the
robot in grasping objects and its repeatability. The use of an
RGB camera in this method limits object position defini-
tion to the x-axis and y-axis. This is because adjustments
made using the warping method only apply to the work
plane itself. Meanwhile, the object will still be affected by
the camera perspective. Therefore, the z-axis has to be fixed
in a certain position. However, object detection using the
YOLO algorithm combined with the warping method could
overcome the influence of camera perspective in grasping
objects. Thus, the robot was still able to determine the posi-
tion of the object without additional parameters, as was done
in previous studies involving depth parameters. Additionally,
based on the initial position for detecting an object, in this
method only one condition was used. If there is more than
one object detection position, then this method can’t be used
because it will affect the object detection algorithm, which
can possibly cause incorrect detection of objects. On the
other side, in the communication system method, the robot
can only receive instructions if the command of the user can
be seen by the camera. In the case where the grasped object
covers the entire camera frame, this method can’t be used.

Nevertheless, our method offered faster inference time
when the robot in real-time detected the object, which even
just running on the CPU obtained 60-70 ms (16.67-14.28
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fps) than the study by Rakshit et al. (2023), which running
on the GPU obtained 11.1 fps. This shows that with our
method, we can reduce the computational load. Thus, the
robot can perform the tasks more quickly. In addition to the
test results in terms of performance on grasping objects, our
method had a percentage that was close to previous studies,
including that conducted by Rakshit et al. (2023), which had
a percentage of robot success in grasping a single object,
namely 97.8%, and multiple objects, namely 96.4%. The
study conducted by Zhang et al. (2019) was 92.5% for a
single object and 83.75% for multiple objects, as was the
study conducted by Mousavian et al. (2019), which had a
percentage of robot success in grasping objects, namely
88%. Furthermore, in the test of the robot when implement-
ing the autonomous object grasping for the HRC concept,
our method may be said to be the simplest method when
compared with methods conducted in previous studies,
including those by Mousavian et al. (2019) and Christen
etal. (2()2aﬂhich used the reinforcement learning method,
as well as studies conducted by Rakshit et al. (2023), Rosen-
berger et al. (2021), and Breyer et al. (2021), which used
depth parameter in feature extraction to make the planning
process more complex. In addition, the studies conducted by
Sanchez-Matilla et al. (2020) used a method that involved
considering dimensions, transparencies, shapes, and fillings
with two RGB cameras, which made the planning process
require additional equipment aside from a camera.

The test results of the robot on the HRC concept showed
a significant error in the scale of the robot used in this

study. The error was attributed to the precision of the robot
manipulator, the placement of the center point of the cam-
era frame against the measuring mat, the cuiuus during
object annotation, the equation in defining the position of
the camera frame to the position of the robot, and the preci-
sion of object detection. In addition to addressing precision
and camera frame placement issues, it is recommended to
use a robot with higher precision or an improved actuator.
This will improve accuracy in grasping objects and prevent
shifts in the camera frame when the robot returns to the
position for detecting the object. Addressing object anno-
tation conditions includes creating an object dataset with
predetermined placement positions, allowing precise annota-
tion of the object grasp point at predetermined locations on
the measuring mat. Ful’lhcm.n'e. possible errors resulting
from the equation defining the position of the camera frame
concerning the position of the robot might have appeared
due to inconsistent changes in point shifts in the frame. As
aresult, the equations used in this study might not have suf-
ficed. Exploring machine learning concepts, including deci-
sion trees or linear regression, can be considered to make an
equation accurately define the frame position. Meanwhile,

@ Springer

the problem of object detection precision can be overcome
by providing more specific information regarding the posi-
Iimf objects that have certain features to make it easier
for the object detection algorithm to learn the position of
the object.

Thus, the consequences of the simplified method in this
study are: (1) The annotation process of the object dataset
has to be selective and carried out carefully; (2) The more
varied the object grasp points are, the more the precision of
object detection decreases and the learning process of the
model is slower; (3) If the condition of object detection is
quite different from the condition in the training dataset, it
may lead to a fault imedicling the position of the object;
(4) The limitation of the Field of View (FOV) of the camera
makes this method can only be used at the caﬂ'a frame
boundary; and (5) The use of an RGB camera in this method
makes the position of the object on the z-axis coordinate
can’t be determined. If there is a need for consideration of
this coordinate, it can be achieved by adding manually to the
robot program for each component.

6 Conclusion

This study presents the robot performance on autonomous
object grasping in the material handling process for the
HRC concept with a simplified method, where the specially
designed robot independently grasping objects with random
positions in the workspace achieved a success rate of 92%
for placing objects one by one and 84% for placing objects
continuously. Additionally, in the performance of grasping
objects without the HRC concept, the robot achieved a suc-
cess rate of 86% for a single object and 76% for multiple
objects, with the avenge error (in units of meters) being
approximately 0.004 for the x-axis and 0.004 for the y-axis.
The error was influenced by factors including the precision
of the robot manipulator, the placement of the center point
of the camera frame against the measuring mat, the cm
tions during object annotation, the equation in defining the
position of the camera frame to the position of the robot,
and the precision of object detection. Nevertheless, our
method offered faster inference time when the robot in real-

time detected the object, which was even just running on
the CPU. In addition, our method also offered the simplest
method without complexity and required additional equip-
ment aside from an RGB camera for the planning process

Additionally, the important consideration in our proposed
simplified methm)vas the use of RGB cameras, limiting
the definition of the position of the object to the x-axis and
y-axis, with the z-axis remaining fixed in a certain position.
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In addition, based on the initial position for detecting an
object, in this study only one condition was used. If there is
more than one object detection position, then this method
can’t be used because it will later affect the object detection
algorithm, which can possibly cause incorrect detection of
objects. On the other side, in the communication system
method, the robot can only receive instructions if the com-
mand of the user can be seen by the camera. In the case
where the grasped object covers the entire camera frame,
this method can’t be used.
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